South Africa’s Education Crisis:
The quality of education in South Africa 1994-2011

Nicholas Spaull

Report Commissioned by CDE
October 2013
Contents

Executive Summary ... 3
Introduction ... 10
Background ... 10
Local studies of educational achievement 13
International comparisons of educational achievement 16
Teacher content knowledge .. 24
National Senior Certificate performance: retention and subject-choice ... 31
Inequality of educational opportunity 35
Insurmountable learning deficits ... 39
Transitions from school to work and tertiary institutions 45
Policy suggestions ... 53
Conclusion .. 57
References ... 61
Executive Summary

The aim of this report is to provide an empirical overview of the quality of education in South Africa since the transition to democracy and, in doing so, comment on the state of the country’s education system. It will become increasingly clear that the weight of evidence supports the conclusion that there is an on-going crisis in South African education, and that the current system is failing the majority of South Africa’s youth. By using a variety of independently conducted assessments of pupil achievement the report shows that – with the exception of a wealthy minority – most South African pupils cannot read, write and compute at grade-appropriate levels, with large proportions being functionally illiterate and innumerate.

As far as educational outcomes, South Africa has the worst education system of all middle-income countries that participate in cross-national assessments of educational achievement. What is more, we perform worse than many low-income African countries. The annually-reported statistics from the National Senior Certificate (NSC) exam in Grade 12 are particularly misleading since they do not take into account those pupils who never make it to Grade 12. Of 100 pupils that start school, only 50 will make it to Grade 12, 40 will pass, and only 12 will qualify for university. Those 18-24-year-olds who do not acquire some form of post-secondary education are at a distinct economic disadvantage and not only struggle to find full-time employment, but also have one of the highest probabilities of being unemployed for sustained periods of time, if not permanently.

While there have been some recent improvements in pupil outcomes, as well as some important policy innovations, the picture that emerges time and again is both dire and consistent: however one chooses to measure learner performance, and at whichever grade one chooses to test, the vast majority of South African pupils are significantly below where they should be in terms of the curriculum, and more generally, have not reached a host of normal numeracy and literacy milestones. As it stands, the South African education system is grossly inefficient, severely underperforming and egregiously unfair.

South Africa’s performance on local and international studies of educational achievement

South Africa currently participates in a number of local and international tests of educational achievement. The recently implemented Annual National Assessments (ANAs), which are annual, nationally-standardised tests of achievement for Grade One to Six and Nine, are one of the most important policy developments in the last 10 years. In principle they provide some standardised indication of learning at the primary grades allowing for the early identification and remediation of learning deficits.

They were implemented for the first time in February 2011, with the most recent round being conducted in September 2012. Although the tests are marked and invigilated by teachers themselves, the 2011 ANAs were externally verified by the HSRC who re-marked a sample of scripts from Grades Three and Six. The 2012 ANAs were not externally verified, but the Department of Basic Education did undertake some form of internal moderation. While the 2011 tests, in agreement with most other available evidence, showed that the vast majority of pupils in South Africa are seriously underperforming relative to the curriculum, the 2012 ANAs showed impossibly large increases for the Foundation Phase (a year-on-year increase of 49 per cent in the case of Grade Three literacy) and have subsequently come under considerable critique by academics across the country. While these
tests are especially important in improving the quality of education in South Africa, their current implementation and lack of external verification reduces much of their value.

The three main international tests of educational achievement that South Africa participates in are TIMSS, PIRLS and SACMEQ.¹ These tests show how the performance of South African pupils has changed over time relative to earlier cohorts of South African pupils, and relative to other countries participating in these studies.

SACMEQ 2000 and 2007 – Southern and Eastern African Consortium for Monitoring Educational Quality (Grade Six numeracy and literacy)

SACMEQ II (2000) and SACMEQ III (2007) showed that there was no improvement in South African Grade Six literacy or numeracy performance over the seven year period. Given that 13 other African countries also participated, it is possible to compare the achievement levels of South African Grade Six children with other Grade Six children on the continent. In the most recent round of SACMEQ (2007), South African pupils ranked 10th of the 14 education systems² for reading and 8th for mathematics, behind much poorer countries such as Tanzania, Kenya and Swaziland. The study found that 27 per cent of South African Grade Six pupils were illiterate since they could not read a short and simple text and extract meaning, with the proportion varying significantly by province: half (49 per cent) of all Grade Six pupils in Limpopo were illiterate, while only 5 per cent of pupils in the Western Cape were thus classified.

The TIMSS study, which tests mathematics and science, showed that there was no improvement in Grade Eight mathematics or science achievement between 1995 and 2002. Following on from this, it was decided that the international Grade Eight tests were too difficult for South African Grade Eight pupils, so that in 2002 both Grade Eight and Grade Nine pupils wrote the Grade Eight test, and in 2011 only Grade Nine pupils wrote the Grade Eight test. Comparing the performance of Grade Nine pupils between 2002 and 2011 showed that there was a noticeable improvement in maths and science performance amounting to approximately one and a half grade levels of learning. This shows that there has been some improvement over the period. While this is hopeful, it is difficult to celebrate when one considers how low the post-improvement level of performance really is. For example, in 2011 a third of pupils (32 per cent) performed worse than guessing on the multiple choice items (i.e. no better than random). Furthermore, three quarters (76 per cent) of Grade Nine pupils in 2011 still had not acquired a basic understanding about whole numbers, decimals, operations or basic graphs, and this is at the improved level of performance. Part of the reason for the improvement is the fact that South Africa started from an exceedingly low base in 2002. To place this in perspective, South Africa’s post-improvement level of performance is still the lowest of all participating countries, with the average South African Grade Nine child performing between two and three grade levels lower than the average Grade Eight child from other middle-income countries.

Teacher content knowledge

¹ TIMSS stands for Trends in International Mathematics and Science Study, PIRLS stands for Progress in International Reading and Literacy Studies, and SACMEQ stands for Southern and Eastern African Consortium for Monitoring Educational Quality.
² Zanzibar and Tanzania are tested separately, making 15 education systems but only 14 countries.
In addition to testing Grade Six pupils, SACMEQ III (2007) also tested Grade Six teachers. Analysis of this data shows that many South African mathematics teachers have below-basic levels of content knowledge, with high proportions of teachers being unable to answer questions aimed at their pupils. Grade Six mathematics teachers from quintiles one, two and three have similar levels of content knowledge to the average teacher in Mozambique, Zambia and Malawi, and have substantially lower content knowledge than teachers in Kenya, Zimbabwe, Uganda and Tanzania. Similarly, rural maths teachers in South Africa have significantly lower levels of content knowledge than rural maths teachers in Swaziland, Tanzania, Uganda and Kenya. Given that the teacher and pupil tests are scaled to be comparable, it is shocking to note that the top 5 percent of Grade Six pupils in South Africa (565 pupils) scored higher marks on the same mathematics test than the bottom 20 percent of Grade Six mathematics teachers in the sample (80 teachers). Given that teachers cannot teach what they do not know, these findings have severe implications for the quality of education in South Africa. Unless the content knowledge (and thereafter pedagogical content knowledge) of mathematics teachers in poor and rural areas is improved, it will be exceedingly difficult to raise pupil achievement in these areas.

National Senior Certificate performance: retention and subject choice

While many critics have pointed out that the National Senior Certificate (NSC) pass requirements are sub-standard and encourage mediocrity, arguably the more serious problem is widespread drop-out before Grade 12, and that over time more pupils seem to be choosing less demanding exam subjects. Regarding the latter, it is revealing to note that over the four year period between 2008 and 2011, the proportion of pupils taking mathematics (as opposed to maths literacy) has fallen from 56 percent to 45 percent, as more pupils opt for the easier maths literacy.

A close inspection of school data shows that of the 100 pupils that start grade one, 50 will drop-out before Grade 12 (most of which happens in grade 10 and 11), 40 will pass the NSC exam and 12 will qualify for university. Given that the NSC is the only externally evaluated, nationally standardised exam in the South African school system, grade progression in primary and lower-secondary school is an unreliable indicator of actual learning. Many pupils proceed to higher grades without acquiring foundational skills in numeracy and literacy. As the NSC exam approaches, schools and teachers can no longer afford to promote pupils who have not acquired the grade appropriate skills, and consequently pupils fail and drop-out of schools in large numbers in Grade 10 and 11 as schools weed out the weaker pupils. Analysis of other datasets like TIMSS verifies this, showing that Grade Nine pupils from quintile one and two schools are performing at least three years behind quintile five Grade Nine pupils.

Comparing the ratio of Grade Two enrolments 10 years prior to Grade 12 relative to NSC passes by province shows that the rates of retention-to-matriculation differ widely across provinces. Alarmingly, in the Eastern Cape only 20 percent of Grade Two pupils from the 2001 cohort went on to pass the NSC exam in 2011, compared to 60 percent in Gauteng and 50 percent in the Western Cape. These ‘conversion rates’ provide a good indication of the quality of education offered to pupils in these provinces. While one should be aware of the differing socio-economic profiles of the provinces, the fact that equally poor provinces with similar geographical, sociological and historical profiles have different conversion rates is testament to the fact that schools and provincial administrations can make a difference.

Inequality of educational opportunity
Analysis of every South African dataset of educational achievement shows that there are in effect two different public school systems in South Africa. The smaller, better performing system accommodates the wealthiest 20-25 per cent of pupils who achieve much higher scores than the larger system which caters to the poorest 75-80 per cent of pupils. The performance in this latter, larger category can only be described as abysmal. These two education systems can be seen when splitting pupils by wealth, socio-economic status, geographic location and language. While there are minor differences depending on which dimension one chooses to split the distribution, the overall picture of two very different schooling systems is quite clear. For example, the latest TIMSS (2011) study showed that the average Grade Nine pupil in KwaZulu-Natal was 2.5 years’ worth of learning behind the average Grade Nine pupil in the Western Cape for Science, and that the average Grade Nine pupil in the Eastern Cape is 1.8 years’ worth of learning behind the average pupil in Gauteng. Similarly, prePIRLS (2011) showed that Grade Four pupils from rural areas and townships are two to two and a half years behind urban children in reading. The National School Effectiveness Study (2007/08/09) showed that Grade Three pupils from former-white schools scored higher on the same test than Grade Five pupils from former-black schools, showing that already by the age of eight there are large inequalities in the educational outcomes of pupils.

Insurmountable learning deficits

Based on prior research which suggested that South African pupils acquire learning deficits early on in their academic careers, the current report proposes a new method for analysing the learning trajectories of pupils over the 12 grades of schooling. It shows that for disadvantaged pupils, the gaps between what they should know and what they do know grow over time. This means that as time goes on, children fall further and further behind the curriculum leading to a situation where remediation is almost impossible in high school since these learning gaps have been left unaddressed for too long. The analysis of pupils in the Eastern Cape showed that while pupils are already 1.8 years behind the benchmark by Grade Three, this grows to 2.8 years behind the benchmark by Grade Nine, making effective remediation at this higher grade improbable. Given that these learning deficits are acquired early on in children’s schooling careers (i.e. in primary school), it is imperative to also identify and remediate these learning gaps early on, before they become insurmountable learning deficits and lead to almost certain failure and drop-out.

Transitions from school to work and tertiary institutions

The six main findings emerging from research on transitions from school to work and tertiary institutions are as follows:

1. Poor quality schooling at the primary and secondary level in South Africa severely limit the youth’s capacity to exploit further training opportunities. As a result, existing skills deficiencies among those who are the product of an underperforming school system (predominantly black youth) are likely to persist.

2. South Africa’s narrow youth unemployment rate of 50 per cent is staggeringly high, both in the context of far lower average global and sub-Saharan youth unemployment rates and in terms of the country’s already high aggregate narrow unemployment rate of 25 per cent.

3. The percentage of 18-24-year-olds who are not in education, employment or training (NEET) has increased from about 30 per cent in 1995 to 45 per cent in 2011, while the percentage enrolled in education has decreased from 50 per cent to 36 per cent and the percentage of youths in employment remained fairly constant at between 17 per cent and 19 per cent. As such, there appears to have been a
shift away from participation in education in favour of either economic inactivity or unemployment among the youth.

4. Youth unemployment in the country is not only high, but has risen precipitously since 2008, following a national trend of worsening unemployment. Moreover, the nature of unemployment experienced by the youth appears to be becoming more severe in terms of an increase in the proportion of unemployed youths that have never worked and the proportion that have been looking for work for more than a year.

5. For the youth, passing the NSC exam does not provide sufficient assurance against becoming unemployed, nor does it markedly increase one’s chances of procuring employment relative to 18-24-year-olds that have lower levels of educational attainment. Instead, the value of passing the NSC exam lies in opening up the opportunity to acquire some form of tertiary education qualification.

6. Though the unemployment rates for 18-24-year-olds with tertiary qualifications are much lower than those for youth’s with the NSC or less, they are nevertheless high in relation to South Africa’s overall unemployment rate.

Policy suggestions

While South Africa’s education system is in a dire state, there are a number of recent policies that indicate that the Department of Basic Education (DBE) is beginning to address some of the root causes of underperformance. The recent workbook initiative, the Curriculum Assessment Policy Statement (CAPS), the Action Plan to 2030 and the implementation of the ANAs are all moves in the right direction. However, there are still a number of areas which must be addressed if we are to improve the forms of teaching and learning in most South African classrooms, including the following:

- Increase the managerial, administrative and technical capacity of the national and provincial bureaucracies.
- Increase accountability by formulating coherent, clear and systematic implementation plans.
- Implement a nation-wide system of diagnostic teacher testing and training.
-Externally evaluate the ANAs at one primary school grade, perhaps Grade Six.
- Provide a clear articulation of who is responsible for ensuring pupil learning, and to whom, with clear consequences for non-performance.
- Use the externally evaluated ANAs to determine which schools are the most dysfunctional and thus require the most support.

Conclusion

The eight most important findings emerging from this research are as follows:

1. Irrespective of which subject or grade one chooses to test, most South African children are performing significantly below the curriculum, often failing to acquire functional numeracy and literacy skills. Apart from the 25 per cent of schools that are mostly functional, South African schools as they currently stand do not, and arguably cannot, impart to pupils the foundational knowledge and skills they should be acquiring at school.

2. The severe inequalities of educational outcomes in South Africa can be seen along a number of correlated dimensions, most notably: wealth, school location, language and province. In
each case the difference between the top and bottom categories is at least two grade-levels worth of learning and sometimes is as large as four grade-levels.

3. The learning deficits that children acquire in their primary school career grow over time to the extent that they become insurmountable and preclude pupils from following the curriculum at higher grades, especially in subjects that are vertically demarcated like mathematics and science. Intervening early to prevent, diagnose and correct these learning deficits is the only appropriate response.

4. While the NSC pass rate has been increasing in recent years, this measure should not be seen as an accurate indication of the quality of education in the country. It is flawed because it only reflects the achievement of the best-performing 50 per cent of a cohort, i.e. those that make it to Grade 12, and it does not take into account subject combinations and the fact that more pupils are opting for easier subjects like mathematics literacy, compared to more challenging subjects like mathematics.

5. There are large differences in the provincial rates of retention-to-matriculation. The ratio of Grade Two enrolments in 2001 to NSC passes in 2011 was only two in ten in the Eastern Cape, but six in ten in Gauteng.

6. South Africa has some of the least-knowledgeable primary school mathematics teachers in sub-Saharan Africa. Many of these maths teachers, especially those that serve poor and rural communities, have below-basic levels of content knowledge. In many instances these teachers cannot answer questions their pupils are required to answer according to the curriculum.

7. Although the Annual National Assessments (ANAs) are one of the most important and needed policy innovations since the transition to democracy, given the way that these tests are currently implemented – including the formulation, marking, invigilation and moderation procedures – they cannot be used as a reliable indicator of progress.

8. The sub-standard quality of education provided to most South African youth has severe economic consequences for those affected. Furthermore, the economic prospects of the youth appear to be deteriorating over time. The percentage of 18-24 year olds who are not in education, employment or training (NEET) has increased from about 30 per cent in 1995 to 45 per cent in 2011 while the percentage enrolled in education has decreased from 50 per cent to 36 per cent over the same period. The unemployment rate for the youth has also increased from 36 per cent in 1995 to 50 per cent in 2011, standing at twice the national unemployment rate in 2011. Furthermore, of those unemployed in 2011, more than 70 per cent had never been employed before. Perhaps most disconcertingly, for the youth, completing Grade 12 does not markedly increase one’s chances of finding employment relative to 18-24 year olds with less than the NSC. Rather, the value of matric lies in opening up opportunities to acquire some form of tertiary education, an opportunity available to only a small minority.

While the low-level equilibrium that South Africa finds itself in has its roots in the apartheid regime of institutionalised inequality, this fact does not absolve the current administration from its responsibility to provide a quality education to every South African child. After 19 years of democratic rule most black children continue to receive an education which condemns them to the
underclass of South African society, where poverty and unemployment are the norm, not the exception. This substandard education does not develop their capabilities or expand their economic opportunities, but instead denies them dignified employment and undermines their own sense of self-worth. In short, poor school performance in South Africa reinforces social inequality and leads to a situation where children inherit the social station of their parents, irrespective of their motivation or ability. Until such a time as the DBE and the ruling administration are willing to seriously address the underlying issues in South African education, at whatever political or economic cost, the existing patterns of underperformance and inequality will remain unabated.
Introduction

The aim of this report is to provide an empirical overview of the quality of education in South Africa since 1994, and in so doing comment on the state of the country’s education system. It will become increasingly clear that the weight of evidence supports the conclusion that there is an on-going crisis in South African education, and that the current system is failing the majority of South Africa’s youth. By using a variety of independently conducted assessments of pupil achievement the report shows that – with the exception of a wealthy minority – most South African pupils cannot read, write and compute at grade-appropriate levels, with large proportions being functionally illiterate and innumerate.

As far as educational outcomes go, South Africa has the worst education system of all middle-income countries that participate in cross-national assessments of educational achievement. What is more, we perform worse than many low-income African countries. The statistics from the annually-reported National Senior Certificate (NSC) exam in Grade 12\(^3\) are particularly misleading since they do not take into account those pupils who never make it to that point. Of 100 pupils that start school, only 50 will make it to Grade 12, 40 will pass, and only 12 will qualify for university. Those 18-24-year-olds who do not acquire some form of post-secondary education are at a distinct economic disadvantage and not only struggle to find full-time employment, but also have one of the highest probabilities of being unemployed for sustained periods of time, if not permanently. While there have been some recent improvements in pupil outcomes, as well as some important policy innovations, the picture that emerges time and again is both dire and consistent: however one chooses to measure learner performance, and at whichever grade one chooses to test, the vast majority of South African pupils are significantly below where they should be in terms of the curriculum, and more generally, have not reached a host of normal numeracy and literacy milestones. As it stands, the South African education system is grossly inefficient, severely underperforming and egregiously unfair.

Background

The recent National Development Plan (NDP) published by the National Planning Commission (NPC) is quickly becoming a roadmap for South African progress, being acknowledged as authoritative by government, business, academia and the public at large. The document is both explicit and comprehensive, giving equal treatment to the reasons for the country’s underperformance and the proposed way forward. One area which receives considerable attention is that of education. The report stresses the links between education, opportunities and employment, with particular emphasis on the notion of building capabilities (NPC, 2012, p. 17). The capability-approach, developed by Amartya Sen, states that people should be afforded the freedom to achieve well-being and develop their capabilities, that is, ‘their real opportunities to do and be what they have reason to value’ (Robeyns, 2011). It is now part of the received wisdom in all of the developmental social sciences that economic and social development is not possible without increased access to education, and an improvement in the quality thereof. Lewin (2007, p. 2) summarises this concept as follows:

> Fairly universally poverty reduction is seen as unlikely unless knowledge, skill and capabilities are extended to those who are marginalised from value-added economic activity by illiteracy, lack of numeracy, and higher level reasoning that links causes and

\(^3\) Grade 12 and the National Senior Certificate are both often referred to as ‘matric’.
effects rationally. In most societies, and especially those that are developing rapidly, households and individuals value participation in education and invest substantially in pursuing the benefits it can confer. The rich have few doubts that the investments pay off; the poor generally share the belief and recognise that increasingly mobility out of poverty is education-related, albeit that their aspirations and expectations are less frequently realised (Lewin, 2007, p. 2).

The NDP concurs with the above and acknowledges that ‘improving the quality of education, skills development and innovation’ is one of three priorities that stand out from the report.4 Thankfully, its assessment of the educational situation in South Africa lacks the usual euphemistic rhetoric of government documents:

The quality of education for most black children is poor. This denies many pupils access to employment. It also reduces the earnings potential and career mobility of those who do get jobs – and limits the potential dynamism of South African business (NPC, 2012, p. 38).

The report highlights a number of institutional and systemic factors that prevent progress in South Africa’s schooling system (NPC, 2012, p. 38). The four most notable of these themes are listed below:

- **Improve the management of the education system**: reduce unnecessary layers of bureaucracy; provide intervention tools that do not require high levels of capacity; supportive and corrective interventions should be inversely proportional to school performance; improve infrastructure in poor schools, especially in rural areas.

- **Increase the competence and capacity of school principals**: provide support to principals based on areas of weakness; select principals purely on merit; allocate greater powers to principals for school management and hold principals accountable for their performance.

- **Move towards results oriented mutual accountability**: strengthen the accountability chain from top to bottom, eliminating a culture of blame-shifting; externally administer and mark the Annual National Assessment for at least one primary grade to ensure that there is a reliable, system-wide measure of quality for all primary schools; provide feedback to parents regarding the performance of their children.

- **Improve teacher performance and accountability**: various proposals which cover training, remuneration, incentives, time on task, performance measurement, content and pedagogical support and teacher professionalism.

The present document directly addresses the last two of these points by elaborating on the existing levels of performance, the current state of the Annual National Assessments and the most recent research on the existing levels of mathematics teacher content knowledge in South Africa. While the NPC report is impressive in its scope and depth, it does not provide an adequate treatment of the egregious inequalities of South Africa’s education system. Consequently two chapters of this report have been devoted to this, chapter seven on the inequality of educational opportunity, and chapter eight on insurmountable learning deficits.

In total, the report has seven chapters which deal with various aspects of education in South Africa. The first half deals with the performance of South African children on local and international tests, with a separate section on NSC results. Thereafter the focus turns to two characteristic features of the

4 The other two priorities are ‘Raising employment through faster economic growth’ and ‘Building the capability of the state to play a developmental, transformative role’ (NPC, 2012, p. 17).
education system, namely the inequality of educational opportunity in the country and the
insurmountable learning deficits children acquire in primary schooling. Lastly, the report focuses on
the transitions from school to work and tertiary institutions. Following a discussion of the policy
implications arising from the research, the report concludes.

A note on ‘quality’

Defining ‘quality’ in relation to education is notoriously difficult, with different definitions in
concurrent use both in the literature\(^5\) and in common parlance. These definitions are not usually
mutually exclusive but do place emphasis on different criteria, with some groups stressing the
unquantifiable outcomes of education (political participation, social and democratic values,
egalitarianism etc.), while others emphasise the measurable cognitive skills acquired at school,
especially numeracy and literacy. Furthermore, quality can refer to both the inputs and the outputs of
education, as Heyneveld and Craig (1996, p. 13) explain, quality is a ‘concept comprising both
changes in the environment in which education takes place and detectable gains in learners’
knowledge, skills and values.’ While it is acknowledged that education should develop the emotional
and creative capacities of children, and not only their cognitive faculties (UNESCO, 2005, p. 30), it is
the latter which we can easily measure and for which we have objectively verifiable scientific
evidence. Consequently, this report focuses on the cognitive outcomes of pupils in South Africa –
particularly the knowledge and skills associated with language, mathematics and science, the subjects
for which there is trustworthy nationally representative data at more than one point in time. This was a
pragmatic, rather than ideological, choice and does not deny the importance of other subjects, or the
myriad of unquantifiable benefits associated with education.

\(^5\) For recent reviews on the concept of quality in education see UNESCO (2005), and for specific reference to
South Africa see Hugo et al. (2010).
Local studies of educational achievement

In South Africa there have been numerous initiatives to monitor the quality of education in the country. By measuring what pupils know, these tests enable researchers and policy makers to assess the level of achievement of different groups of pupils. The discussion below provides a cursory overview of each study, as well as the most important findings emerging from the research.

Systemic Evaluations (2001 and 2007; Grade Three)

The Systemic Evaluations tested a random sample of approximately 54,000 Grade Three pupils in more than 2,000 primary schools in 2001 and 2007 (DoE, 2008a). The results of the 2007 Systemic Evaluation showed an average score of 36 per cent for literacy (30 per cent in 2001) and 35 per cent for numeracy (30 per cent in 2001) – showing that there was an increase of 5 percentage points since 2001 for numeracy and 6 percentage points for literacy. The largest increases were found in the Free State (16 percentage points for literacy, 13 percentage points for numeracy) and the Western Cape (15 percentage points for literacy, 17 percentage points for numeracy). The Department of Education concluded in 2008 that there was an ‘urgent need to improve performance in these critical foundation skills’ (DoE, 2008a, p. 12) – a statement which mirrored the earlier call for an ‘urgent intervention to address the situation’ which appeared five years earlier in the 2003 Systemic Evaluation report (DoE, 2003, p. 66). Notwithstanding the above, there are serious concerns around the comparability of these tests and thus they should not be used as a primary source for reporting changes over time.6

Western Cape Learner Assessment Study (2003; Grade Six)

The Western Cape Learner Assessment Study in 2003 tested every primary school in the Western Cape at the Grade Six level. Of the 34,596 pupils tested, a dismally small proportion were performing at the appropriate Grade Six literacy level (35 per cent), and an even smaller proportion were at the appropriate Grade Six numeracy level (15.6 per cent) (Taylor, Fleisch, & Shindler, 2008, p. 43). Taylor et al go on to disaggregate these figures by ex-department and make the important point that four out of five Grade Six children were at the appropriate reading level in former white schools, compared to four children in a hundred in former Department of Education and Training (black) schools.

The National School Effectiveness Study (NSES; 2007-2009; Grades Three to Five)

The National School Effectiveness Study is the only panel dataset on educational achievement to have been undertaken in South Africa.7 In this study 266 schools were tested in numeracy and literacy in 2007 (Grade Three), 2008 (Grade Four) and 2009 (Grade Five) (Taylor, 2011). The same pupils wrote the same test in 2007, 2008 and 2009, with the test being calibrated at the Grade Three level. The mean scores for literacy in Grade Three [Grade Four] were 19 per cent [27 per cent], and on the numeracy tests were 28 per cent [35 per cent] – all well below the levels that pupils at these grades

6 A closer inspection of government reports shows that the 2008 report on the Systemic Evaluations indicates that the national average was 30 per cent for literacy in 2001 (DoE, 2008a, p. 11), however the 2003 report on the 2001 Systemic Evaluation reports that the 2001 average for literacy was 54 per cent (DoE, 2003, p. 32). It is unclear why there is such a large discrepancy between the two reports. For the purposes of this paper I use the figures from the more recent 2008 report.

7 Gauteng did not participate in the NSES study since other testing was being administered in that province at the same time.
should be achieving. One of the most important findings relates to the learning deficits of most children in historically black schools, as Taylor (2011, p. 16) explains:

It is alarming, however, that the distribution for Grade Five pupils in historically black schools was still a considerably weaker distribution than that of Grade Three pupils in historically white schools. One can therefore conclude that by the fifth grade the educational backlog experienced in historically black schools is already equivalent to well over two years’ worth of learning.

Annual National Assessments (ANA; 2011 and 2012; Grades One-Six and Nine)

The Annual National Assessments (ANAs) of 2011 and 2012 were a hallmark achievement for the Department of Basic Education. The ANAs are a set of nationally standardised assessments for numeracy and literacy in Grades One to Six and Nine. They were carried out in February 2011 (testing 2010 content) and September 2012 (testing 2012 content). Since they tested every single pupil from Grades One to Six and Nine, these two assessments represent the largest data-gathering exercise in the country apart from the two censuses.

Up until 2011 the only standardised national exams that existed were at the exit-level of the education system (NSC). All other exams were either provincial (Systemic Evaluations in the Western Cape and Gauteng), limited to a nationally representative sample (Systemic Evaluations, TIMSS, PIRLS SACMEQ), or more commonly, decided at the school or classroom level. Without a nationally comparable (standardised) exam at the primary school level, one could not compare schools across provinces, districts, or over time. Consequently it was not possible for policy makers or parents to determine if a primary school was underperforming or not, at least not with any measure of certainty. Furthermore, it was not possible to hold schools accountable for pupil learning or to target support to where it was needed most, since pupil learning was imperfectly measured and thus of limited comparative value.

The Department of Basic Education has released a report for both the ANA 2011 (DBE, 2011b) and the ANA 2012 (DBE, 2012) which outlines their rationale, methodology, procedures and results.

In 2011, the HSRC verified a sample of 1,800 schools by remarking 50 test scripts (25 for numeracy and 25 for literacy) for each of Grade Three and Six (DBE, 2011b). In 2012 there was no external verification by an independent body, although the DBE did conduct its own form of verification by centrally remarking a sample of scripts from Grades Three, Six and Nine (DBE, 2012, p. 17).

While this system of testing is still in its infancy, and thus a certain amount of problems are to be expected, there are a number of serious concerns with these tests, particularly relating to the comparison between ANA 2011 and 2012. The most serious of these are outlined below:

- In both ANA 2011 and 2012, teachers marked tests themselves, and invigilated classes within their own schools. Although ANA is not a high-stakes exam, the very act of having to report the results from a national, standardised exam may induce teachers and principals to act in strategic ways (guiding pupils during the exam or marking leniently for example). It is not clear that the existing verification procedures (either in 2011, but particularly in 2012) can detect, correct or prevent these irregularities.

- The difficulty levels between 2011 and 2012 and across grades within a particular year do not appear to be the same, either across grades or years. In a Mail & Guardian interview, Van der
Berg & Spaull (2012) provide a full explanation of why the ANAs of 2011 and 2012 are not comparable. The most salient points of that discussion are included below:

- It is unclear whether the correct procedures were followed to ensure that the tests were of equal difficulty in each grade and across the two years. Although there were anchor items for some grades between 2011 and 2012, Rasch analysis (which is necessary for equating purposes) was not employed. Furthermore, for Grades One, Two, Four and Five there was no item-level data for 2011 (since the HSRC only verified Grades Three and Six) and thus difficulty levels could not possibly have been equated between 2011 and 2012 since there was no data on baseline anchor items. Nevertheless the Department of Basic Education report makes explicit comparisons between average scores for all grades (DBE, 2012).

- If the tests for the different grades were of equal difficulty, the results of 2012 are not internally consistent, i.e. changes between grades are too large or erratic to be plausible. For example, the Grade One mathematics average in 2012 was 68 per cent but the Grade Three average just two grades later is 41 per cent, with the Grade Six average being 27 per cent. The magnitude of these changes over only a few grades suggests that there are different levels of curriculum mastery at different grades. It is more likely that not all the tests were set at grade-appropriate levels.

- The year-on-year increase of 17 percentage points for Grade Three literacy, from 35 per cent in 2011 to 52 per cent in 2012 (a 49 percent increase), if true, would mean that South Africa has improved more in one or two years at the Grade Three level for literacy (0.7 standard deviations) than the fastest improving country has in a seven year period between PIRLS 2001 and 2006 (Russia – 0.54 standard deviations).

- A number of academics have called the 2012 results into question, including those on the ANA advisory committee, such as Dr Surette van Staden, who refers to the improvements as ‘highly unlikely’ (John, 2012). Professor Mary Metcalfe, former higher education director general, reiterates this point when she cautions that ‘we need to be sceptical of these results’ (John, 2012). Mr Vishnu Naidoo, the chairman of the Foundation for English, Mathematics, Science and Innovation of South Africa (FEMSISA) – the body that runs the national mathematics olympiads – has voiced concern regarding the credibility of the Grade Nine mathematics ANA paper, referring to the test as ‘an absolute disaster’ (Naidoo, 2012).

- Van der Berg and Spaull (2012) further explain that this lack of comparability can actually do harm to the system, ‘the fact that the ANA’s results from 2011 and 2012 are incomparable is highly unfortunate. This means that schools, teachers and parents are getting erroneous feedback. Thus the 2012 ANA results, compared to those of 2011, create an impression of a remarkable improvement in school performance which did not really occur. This would make it so much more difficult to really induce improvement in behaviour at the classroom level that is central to real advances in learning outcomes.’

- In her speech announcing the ANA 2012 results, the Minister of Basic Education makes explicit comparisons between ANA 2011 and ANA 2012 and subsequently
concludes that ‘ANA learner performance in the Foundation Phase (Grades One, Two and Three) is pleasing’ (Motshekga, 2012). Statements such as these are misleading and flout all of the available evidence that Foundation Phase performance for the majority of South African children is dire, as this report explains.

- By comparing the results of ANA 2011 and ANA 2012 when they are not comparable, the DBE has misrepresented the real changes in the system over this period. In doing so it has undermined its own technical credibility and that of the entire ANA process going forward.

In addition to the above major national and provincial evaluations, Fleisch (2008, p. 22) provides a summary of some smaller school improvement project evaluations. These include the Quality Learning Project (2001), the District Development Support Programme (2001), the Family Literacy Project (2000), the Early Reading Workshop, and various projects evaluated by Eric Schollar. Each of these small-scale evaluations adds some nuance and detail to the overall picture of low and unequal performance in South Africa. Furthermore, both the Gauteng and Western Cape governments have conducted all-pupil standardised tests for some years now. While reports on these tests are not usually publicly available, they do play an important role in tracking achievement over time and providing information for directed support.

International comparisons of educational achievement

TIMSS is a cross-national study which tests the mathematics and science knowledge of Grade Eight pupils in a variety of countries. The International Association for the Evaluation of Educational Achievement (IEA) works with local educational research organisations to run TIMSS every four years, and, in addition to ensuring the quality of the TIMSS studies, also scales the results so that they are comparable across countries and over time (Mullis, Martin, Foy, & Arora, 2012). South Africa participated in 1995, 1999, 2002 and 2011. In the 2002 TIMSS South Africa tested Grade Nine pupils in addition to grade 8 pupils, since earlier rounds of TIMSS indicated that the international Grade Eight test was too difficult for South African pupils, and consequently too many pupils were performing at guessing level on the multiple choice questions (i.e. no better than random). This decreases the reliability and accuracy of the tests (Foy, Martin, & Mullis, 2010) and thus in 2011, only Grade Nine South African pupils wrote the TIMSS Grade Eight test.

Of all the studies discussed in this report, TIMSS provides the best opportunity to compare educational outcomes over the period 1995-2011.

Between TIMSS 1995, 1999 and 2002 there was no discernable improvement in either mathematics or science at the Grade Eight level in South Africa. Although the average test scores for South Africa did change slightly over this period, none of these changes were statistically significant (i.e. one cannot

8 Although there was a 2007 TIMSS study, South Africa did not participate.
rule out that they occurred by chance). However, between TIMSS 2002 and TIMSS 2011, the average performance for Grade Nine pupils in both mathematics and science increased by 67 points and 64 points respectively. This amounts to one and a half grade levels of learning for each subject (Reddy, et al., 2012, p. 3). This is an unexpectedly large increase in performance, and provides a strong indication that learning outcomes for Grade Nine pupils in mathematics and science have improved over the 2002-2011 period. However, it must be noted that South Africa’s overall performance post-improvement is still the worst of all middle-income countries that took part in the TIMSS tests.

Figure 1 below shows the average performance of South African Grade Eight and Grade Nine pupils for the years that South Africa participated in TIMSS, including the error bars for the 95 per cent confidence interval around the mean. From this graph we can see that although there was a large improvement between 2002 and 2011, South Africa still lags considerably behind the TIMSS middle-income country Grade Eight mean for both mathematics and science. If one uses the TIMSS benchmark of 40 points as equivalent to one grade-level of learning, the average South African Grade Nine pupil is two years’ worth of learning behind the average Grade Eight pupil from 21 other middle-income countries in mathematics, and 2.8 years behind in science.

Figure 1: South African mathematics and science performance in the Trends in International Mathematics and Science Study (TIMSS 1995-2011) with 95% confidence intervals around the mean*

*Of the 42 participating countries at the eighth grade, 21 are classified as middle-income countries according to the World Bank and these are used to calculate the TIMSS middle-income country Grade Eight mean (equally weighted). They are: Ghana, Morocco, Syria, Indonesia, Palestine, Jordan, Iran, Chile, Tunisia, Macedonia, Thailand, Georgia, Malaysia, Lebanon, Turkey, Romania, Armenia, Ukraine, Kazakhstan, Lithuania and Russia.

Figure 2 and Figure 3 below show the distribution of mathematics and science performance for all participating middle-income countries, and for South African wealth quintiles and Independent
schools. In both graphs the y-axis increases in 40-point intervals, i.e. representing one grade-level of learning. The two most striking features of both graphs are firstly that South Africa performs at the bottom of the middle-income country distribution, and secondly that the internal distribution of performance in South Africa is highly unequal.

The average quintile one and two Grade Nine pupil in South Africa is three years worth of learning behind the average quintile five pupil in mathematics, and four years behind in science. These inequalities are also evident between provinces with the average pupil in the Eastern Cape being 2,2 years behind the average pupil in the Western Cape in mathematics, and 3,2 years behind in science (Reddy, et al., 2012, p. 8).

To provide some indication of the scale of within-country inequality in South Africa it is helpful to compare this to between-country differences. The difference in achievement between quintile one and quintile five South African pupils in science is the same as the difference between Singapore (the best performing country) and Palestine (the 33rd best performing country).

Figure 2: Average Grade Eight mathematics test scores for middle-income countries participating in TIMSS 2011 (+95% confidence intervals around the mean)

9 All public South African schools are classified according to wealth and placed into one of five categories ranging from quintile one which is the poorest 20 per cent of schools all the way up to quintile five which is the wealthiest 20 per cent of South African schools.

10 Although the South African average is higher than that in Ghana, it is important to remember that South Africa tested Grade Nine pupils while all other countries (except Honduras and Botswana) tested their Grade Eight pupils.
Progress in International Reading and Literacy Study (PIRLS; 2006, 2011; Grade Four and Five)

The Progress in International Reading Literacy Study (PIRLS) is an international initiative aimed at testing the reading literacy of Grade Four and Grade Eight pupils in participating countries. There have been two waves of PIRLS, 2006 and 2011, and South Africa has only participated in the Grade Four tests. Unlike almost all other countries that participated in 2006, where only Grade Four was tested, in South Africa Grade Five pupils were tested in addition to Grade Four pupils so that one could compare Grades Four and Five, and out of a concern that Grade Four is a transition phase (Howie, et al., 2008). In the 2006 PIRLS, South African Grade Five pupils achieved the lowest score of the 45 countries that participated, including other middle-income countries such as Morocco, Iran, Trinidad and Tobago, Indonesia, and Macedonia. In PIRLS 2006, only 13 per cent of Grade Four and 22 per cent of Grade Five South African pupils reached the Low International Benchmark of 400. This is in stark contrast to the majority of other participating countries. In half of the participating countries, 94 per cent of pupils reached this Low International Benchmark. Trong (2010, p. 2) elucidates the practical value of this benchmark: ‘learners who were not able to demonstrate even the basic reading skills of the Low International Benchmark by the fourth grade were considered at serious risk of not learning how to read.’ Using this framework, 87 per cent of Grade Four and 78 per cent of Grade Five pupils in South Africa were deemed to be at serious risk of not learning to read.

In response to the incredibly weak performance of South African pupils in PIRLS 2006, in 2011, South Africa opted to take part in prePIRLS. In PIRLS, it is assumed that most fourth grade pupils are transitioning from ‘learning to read’ to ‘reading to learn’, by contrast, prePIRLS is ‘a less difficult assessment, intended to measure the reading comprehension skills of pupils who are still in the process of learning how to read’ (Howie & van Staden, 2012). It was decided that only schools whose
language of learning and teaching (LOLT) was English or Afrikaans from Grade One would take part in PIRLS 2011. Grade Five pupils in these schools wrote the PIRLS 2011 test, which is set at an international Grade Four level. prePIRLS, on the other hand, covers a nationally representative sample of Grade Four pupils. Because of the questionable decision to test only a sub-sample of South African pupils in PIRLS 2011 (and because PIRLS and prePIRLS are not currently comparable), it is unfortunately not possible to draw any meaningful conclusions about the reading proficiency of South African primary school children between 2006 and 2011 using this data. Although some form of comparison is possible between English and Afrikaans schools between the two assessments, given that these schools are a very select sub-sample of South African schools, one cannot draw any legitimate inference on South African performance on the whole.

Notwithstanding the above, the prePIRLS assessment of 2011 does provide valuable information on pupil performance at the Grade Four level in South Africa, particularly regarding language of instruction and home language. Figure 4 below shows the average performance of pupils in South Africa based on the language of the test that they wrote and the average performance for South Africa, Botswana and Colombia (the only other two countries participating in prePIRLS). Clearly there are severe inequalities in the reading proficiency of pupils based on language of learning and teaching (LOLT). Although the English and Afrikaans averages do include African pupils who were taught in these languages, the performance of pupils who learn in an African language is significantly below that of pupils who learn in English or Afrikaans; as much as three years worth of learning behind for pupils in schools where the LOLT is Xitsonga, Tshivenda or Sepedi. Looking internationally, although South African Grade Four pupils perform similarly to Grade Four pupils in Botswana, they are almost three years (2.9) behind the average child in Colombia.

Figure 4: South African performance in prePIRLS 2011 (Grade Four) by test language

11 In their presentation of the PIRLS 2011 results, Howie and van Staden (2012) explain that there was no overall difference between PIRLS 2006 and PIRLS 2011, i.e. no improvement for the only group of schools for which some comparison can be made (English and Afrikaans schools at the Grade Five level).

12 It is worth noting that public current expenditure on primary education per pupil was 49% higher in South Africa ($1685) than it was in Columbia ($1132) - using 2010 figures for expenditure from the Education For All 2012 report (UNESCO, 2012, p. 383).
If one looks at the prePIRLS international benchmarks, it is revealing to note the vast inequalities between language groups in their ability to read by the end of Grade Four. Half of all Grade Four children whose home language was either Sepedi, Xitsonga or Tshivenda could not read by the end of Grade Four, compared to about 10 per cent for Grade Four children whose home language was English or Afrikaans.

Given the correlations between language, socio-economic status, geographic location and school functionality, the inequalities in learning outcomes presented above will also be reflected in other dimensions such as school location. For example, rural and township children are on average between two and two and a half years behind urban children in reading (Howie & van Staden, 2012). It is difficult to disentangle these effects and isolate a single factor as being the most important one.

Southern and East African Consortium for Monitoring Educational Quality (SACMEQ; 2000 and 2011; Grade Six)

The Southern and East African Consortium for Monitoring Educational Quality (SACMEQ) study is a cross-national initiative consisting of 14 countries in southern and eastern Africa. SACMEQ tests the numeracy and literacy skills of Grade Six pupils in each of the participating countries. South Africa participated in the second (2000) and third (2007) rounds of SACMEQ. Between SACMEQ II (2000) and III (2007) there was no statistically significant improvement in either reading or mathematics at the Grade Six level, in spite of the fact that other African countries made considerable improvements over the same period (for example Tanzania and Namibia).

Of the 14 countries that participated in SACMEQ II (2000), South Africa had the ninth highest mathematics score and the eighth highest reading score (Van der Berg, 2007) – behind lower-income countries such as Botswana, Swaziland and Kenya. In the more recent SACMEQ study (2007), of the 15 countries that participated, South Africa came tenth for reading and eighth for mathematics, still behind poorer countries such as Kenya, Tanzania and Swaziland. More concerning than South Africa’s relative position in regional context is the national prevalence of functional illiteracy and functional innumeracy. Of the 9 071 Grade Six pupils that were tested, 27 per cent were deemed to be functionally illiterate (i.e. they cannot read for meaning), while 40 per cent were classified as functionally innumerate (Spaull, 2013). These figures differ substantially across the nine provinces. While half (49 percent) of all Grade Six pupils in Limpopo are functionally illiterate, the comparable figure in the Western Cape is one in twenty (5 percent) (Spaull, 2011b). Similar differences can be seen based on the socio-economic status of the school and the school’s location – urban or rural.

The most recent scholarship on SACMEQ has combined data on access to education and the quality of that education. For example, Spaull & Taylor (2012) create a composite statistic called ‘effective enrolment’, which is the proportion of the age appropriate population that has reached some basic threshold of numeracy and literacy proficiency. Put simply, it is enrolment that produces learning. This measure takes into account differential enrolment rates and differential dropout rates between countries. The primary motivation behind creating the statistic was the suspicion that enrolment, and even attendance (access) did not always translate into learning (quality). As they explain:

> Many pupils in Africa sit through six years of formal full-time schooling yet do not acquire even the most basic numeracy and literacy skills. Such schooling is of dubious value. It does not impart foundational cognitive skills and thus it does not create the choices and freedoms that ignorance denies (Sen, 1999)....Thus, additional years of education do not necessarily increase human capital or expand the capabilities of pupils (Spaull & Taylor, 2012, p. 4).
This research is especially pertinent to South Africa since it has one of the highest levels of primary school enrolment (98 per cent) in Africa, yet one of the lowest in terms of primary school educational outcomes – particularly amongst poorer and rural pupils.

Table 1 below shows the effective enrolment rates for 10 African countries by gender, location and wealth quintiles. Looking at South Africa one can see that only 71 per cent of 13 year old children are functionally literate (i.e. can read for meaning), compared to 87 per cent in Kenya and 88 per cent in Swaziland. More disconcerting though is the shockingly high proportion of functional illiteracy among 13 year olds in rural areas (58 per cent) and in the poorest schools, as the authors note: ‘Learning deficits are far greater than access deficits in all ten countries. The most striking example of this is in South Africa where 97 per cent of quintile one South African 13 year olds are enrolled, but only 56 per cent of them are literate’ (Spaull & Taylor, 2012, p. 15).

Table 1: Effective enrolment rates: i.e. percentage of the Grade Six aged population that are functionally literate (Spaull & Taylor, 2012, p. 17)

<table>
<thead>
<tr>
<th>Country</th>
<th>Gender</th>
<th>Location</th>
<th>Wealth quintiles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Kenya</td>
<td>87,3</td>
<td>85,8</td>
<td>88,9</td>
</tr>
<tr>
<td>Lesotho</td>
<td>70,1</td>
<td>62,6</td>
<td>76,8</td>
</tr>
<tr>
<td>Malawi</td>
<td>54,4</td>
<td>59,0</td>
<td>49,7</td>
</tr>
<tr>
<td>Namibia</td>
<td>80,1</td>
<td>76,4</td>
<td>83,6</td>
</tr>
<tr>
<td>South Africa</td>
<td>71,2</td>
<td>67,1</td>
<td>75,4</td>
</tr>
<tr>
<td>Swaziland</td>
<td>88,2</td>
<td>87,7</td>
<td>88,6</td>
</tr>
<tr>
<td>Tanzania</td>
<td>82,3</td>
<td>81,1</td>
<td>83,6</td>
</tr>
<tr>
<td>Uganda</td>
<td>71,0</td>
<td>73,1</td>
<td>68,8</td>
</tr>
<tr>
<td>Zambia</td>
<td>49,3</td>
<td>51,9</td>
<td>46,6</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>75,3</td>
<td>71,6</td>
<td>78,1</td>
</tr>
</tbody>
</table>

Figure 5 below illustrates this situation by showing what proportion of Grade Six aged children are not enrolled, and for those that are enrolled, their level of achievement. Comparing South Africa and Kenya is illuminating: Although Kenya has more children that are un-enrolled (5 per cent) compared to South Africa (2 per cent), of those that are enrolled, the vast majority are acquiring foundational literacy skills, with only 7 per cent of Kenyan Grade Six aged pupils classified as functionally illiterate. In South Africa 25 per cent of Grade Six aged pupils are functionally illiterate.
Figure 5: Combining educational access and educational quality using SACMEQ III (2007, Grade Six)

Source: Spaull & Taylor (2012: 18). SACMEQ III data is used for educational achievement and World Bank data for attendance rate (Filmer, 2010).
Teacher content knowledge

Teachers are, and have always been, the primary locus of schooling systems around the world. Being the single most important element of the education system, the quality of a country’s teachers is intimately related with the quality of its education system. While this is accepted at face value by most societies, there is also considerable research to support this claim. For example, a report by the OECD (2005, p. 2) concludes that, second only to pupil background factors (which are largely beyond the control of education policy), ‘factors to do with teachers and teaching are the most important influences on pupil learning. In particular, the broad consensus is that ‘teacher quality’ is the single most important school variable influencing pupil achievement.’ Similarly, a popular McKinsey & Company study finds that ‘The available evidence suggests that the main driver of the variation in pupil learning at school is the quality of the teachers’ (Barber & Mourshed, 2007, p. 12), and thus that ‘the quality of an education system cannot exceed the quality of its teachers’ (p. 41).

Defining teacher quality is a prickly endeavour, with any single definition bound to disappoint at least one group of people. For the purposes of this discussion a quality teacher is someone who possesses the following four attributes (in no particular order):

i. some requisite level of professionalism (values),
ii. the inclination to teach (attitudes and desires),
iii. the ability to teach (knowledge, skills and pedagogy), and therefore,
iv. the competence to teach (imparting and instilling the knowledge, skills and values pupils should be acquiring at school).

Clearly someone must possess attributes one to three if they are to be a competent teacher. The importance and relative weighting of attributes one to three are open to interpretation. Given that this is an empirical enquiry into the quality of teaching, and that we do not have nationally representative data on the attitudes, desires and values of South African teachers, the focus here will be on teachers’ content knowledge. Fortunately South African Grade Six teachers participated in the teacher testing component of SACMEQ III (2007) which tested reading and mathematics content knowledge of reading and mathematics teachers respectively. The sample is large (498 maths teachers and 498 reading teachers) and nationally representative of students at the Grade Six level.

International literature and previous South African studies

Teacher content knowledge is a necessary but not sufficient condition for pupil learning. Simply because teachers can calculate the sum of two fractions does not imply that they will be able to impart this understanding to others. However, if they cannot calculate the sum of two fractions, one can be sure that they also cannot teach this yet-to-be-acquired skill to their pupils. Put simply, teachers cannot teach what they do not know.

This distinction between content knowledge and pedagogy has been explored extensively in the literature, starting with Shulman’s (1986) seminal paper introducing pedagogical content knowledge, and extending to the more recent discussions of ‘content knowledge for teaching’ (Ball, Thames, & Phelps, 2008), both of which combine elements of content knowledge and pedagogy in interesting and important ways. However, most studies assume that teachers already have the basic content knowledge which they are expected to teach, and thus the real question is whether they can convey
that knowledge to their pupils or how much more they need to know. For example, in Ball et al.’s (2008, p. 4) discussion of mathematical-content-knowledge-for-teaching they explain that:

By this phrase [mathematical content knowledge for teaching], we mean the mathematical knowledge that teachers need to carry out their work as teachers of mathematics. Obviously, teachers need to know the content they teach and that pupils are expected to master. Our question is whether they need to know more, and if so, what they need to know and in what ways they need to know this mathematics to use it in their teaching? (emphasis added).

The extant literature on the content knowledge of South African teachers reveals that many have not mastered the curricula they are expected to teach (see Taylor & Moyane, 2004; and Fleisch, 2008, p. 123 for examples). Taylor & Vinjevold’s (1999, p. 230) conclusion in their book ‘Getting Learning Right’ is particularly explicit:

The most definite point of convergence across the [President’s Education Initiative] studies is the conclusion that teachers’ poor conceptual knowledge of the subjects they are teaching is a fundamental constraint on the quality of teaching and learning activities, and consequently on the quality of learning outcomes.

More recently, Carnoy et al. (2011) found that Grade 6 mathematics teachers in the North West achieved an average score of 40% on a test consisting primarily of Grade 6 level items (see Taylor & Reddi, 2013 and also Taylor & Taylor, 2013). To date, all studies looking at teacher content knowledge in South Africa have been small, isolated project-based inquiries into teacher content knowledge in a particular region. While these are highly instructive and together provide a clear indication that teacher content knowledge is seriously lacking (at least in certain parts of the school system), they are not nationally representative. The only exception to this appears to be the SACMEQ III study conducted in 2007. The SACMEQ III study in South Africa was a nationally representative survey which included 392 primary schools, as well as 498 Grade Six reading teachers and 498 Grade Six mathematics teachers. Not all teachers wrote the tests, and in the end we only have maths-teacher scores for 401 Grade Six maths teachers and reading-teacher scores for 415 Grade Six reading teachers.

Grade Six mathematics teacher mathematics content knowledge in South Africa

The focus for the remainder of this section will be on Grade Six mathematics teacher content knowledge. This is primarily because preliminary analyses show that most South African Grade Six mathematics teachers do not possess desirable levels of mathematics content knowledge. Hungi et al (2011, p. 13) report that only 32 per cent of South African Grade Six mathematics teachers have desirable levels of mathematics content knowledge, with the SACMEQ average of 14 African countries being 42 per cent. This is in stark contrast to many other poorer African countries with much higher proportions of maths teachers with desirable levels of mathematics content knowledge, for example: Kenya (90%), Zimbabwe (76%) and Swaziland (55%). The situation for reading teachers is slightly better with 60 per cent of South African Grade Six reading teachers having desirable levels of reading content knowledge, with the SACMEQ average being 58 per cent.

The SACMEQ III mathematics teacher test consisted of 42 multiple choice questions, 16 of which were common items drawn from the SACMEQ III Grade Six pupil mathematics test. Using Rasch analysis SACMEQ created a teacher test score on the same scale as the pupil test score such that direct comparisons can be made between pupil and teacher content knowledge (Ross, et al., 2005, p. 257). The difficulty levels of each item are reflected in the Rasch scores, which are used to calculate
an overall score. Before turning to the overall mathematics-teacher scores, it is useful to calculate the proportion of test questions which the teachers answered correctly, irrespective of their difficulty level. Table 2 below shows that the median South African teacher answered 46 per cent of the 42 questions correctly. Given that the test was a multiple choice test with four possible options, if teachers guessed they would get the right answer 25% of time. Thus, all figures in Table 2 below have been corrected for guessing using Frary’s (1988) formula for the scoring of multiple-choice tests. This formula hides the large inequalities between quintile one teachers (37 per cent correct) and quintile five teachers (71 per cent correct) as well as between urban (52 per cent correct) and rural (40 per cent correct) teachers. If one only looks at the 16 items that are common to the teacher and pupil tests, a similar pattern of inequality is evident. Quintile one Grade Six mathematics teachers could only answer seven of the 16 items that were included in the Grade Six pupil test (42 per cent correct), while quintile five Grade Six mathematics teachers could answer 12 of these 16 items (75 per cent).

Table 2: Number of correct items on the SACMEQ III (2007) mathematics-teacher test for South Africa after correcting for guessing.

<table>
<thead>
<tr>
<th>Quintile 1</th>
<th>Median number of items correct on Grade 6 maths-teacher test (max 42)</th>
<th>Median percentage correct for full Grade 6 maths-teacher test (42 items)</th>
<th>Median number of items correct on Grade 6 maths-teacher test but only for 16 items common with pupil test (max 16)</th>
<th>% correct for common-items of Grade 6 maths-teacher test (16 items)</th>
<th>Number of Grade 6 maths teachers in the SACMEQ sample who wrote the maths test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quintile 2</td>
<td>15</td>
<td>37%</td>
<td>7</td>
<td>42%</td>
<td>75</td>
</tr>
<tr>
<td>Quintile 3</td>
<td>18</td>
<td>43%</td>
<td>8</td>
<td>50%</td>
<td>78</td>
</tr>
<tr>
<td>Quintile 4</td>
<td>17</td>
<td>40%</td>
<td>8</td>
<td>50%</td>
<td>80</td>
</tr>
<tr>
<td>Quintile 5</td>
<td>21</td>
<td>49%</td>
<td>11</td>
<td>67%</td>
<td>79</td>
</tr>
<tr>
<td>Quintile 5</td>
<td>30</td>
<td>71%</td>
<td>12</td>
<td>75%</td>
<td>89</td>
</tr>
<tr>
<td>Urban</td>
<td>22</td>
<td>52%</td>
<td>11</td>
<td>67%</td>
<td>234</td>
</tr>
<tr>
<td>Rural</td>
<td>17</td>
<td>40%</td>
<td>7</td>
<td>42%</td>
<td>167</td>
</tr>
<tr>
<td>South Africa</td>
<td>19</td>
<td>46%</td>
<td>9</td>
<td>58%</td>
<td>401</td>
</tr>
</tbody>
</table>

To provide a practical example, question nine of the mathematics teacher test (which is the same as question 48 of the pupil test) asked the following question:

Question 9 If the height of a fence is raised from 60cm to 75cm, what is the percentage increase in height?

a) 15 per cent,
b) 20 per cent,
c) 25 per cent and
d) 30 per cent.

This problem is an application of percentage calculations. The Revised National Curriculum Statement (RNCS) for Grade Six (the prevailing curriculum at the time of testing – 2007) specified that a Grade Six pupil is performing at the appropriate Grade Six level when he/she ‘estimates and

13 Frary’s (1988) formula is “Corrected” formula score = (number of items answered correctly) – (number of items answered wrongly) / (number of choices per item – 1)
calculates by selecting and using operations appropriate to solving problems that include...finding percentages of whole numbers’ (DoE, 2002, p. 43). Notwithstanding the fact that this question is within the expectations of the Grade Six curriculum, only 23 per cent of South African Grade Six mathematics teachers could answer this question – with the proportion answering correctly ranging from 13 per cent for quintile one teachers to 46 per cent for quintile five teachers. Most teachers chose the distracter option ‘a’ (15 per cent), simply subtracting 75cm from 60cm. Given this poor teacher content knowledge of percentage calculations, it is unsurprising that only 16 per cent of South African Grade Six pupils could answer this question correctly. One need not belabour this point, except to reiterate that teachers cannot teach what they do not know, or put differently, pupils cannot acquire a skill at school that their teachers do not possess.

South Africa in regional context

Another way of assessing the levels of mathematics content knowledge of South African teachers is to compare them to Grade Six teachers from other African countries. Figure 6 shows the mean maths-teacher mathematics score for each of the 14 SACMEQ education systems. In addition to the mean, the upper and lower limits of the 95 per cent confidence interval are also shown. In layman’s terms, the 95 per cent confidence interval around the mean provides an indication of the uncertainty that is introduced because this is a sample, rather than the population. We can be 95 per cent certain that the true population estimate of maths-teacher content knowledge lies within the 95 per cent confidence interval. Put differently, if we drew 100 different SACMEQ samples of a similar size, the sample mean from 95 of the 100 samples would lie within our confidence interval. Importantly, if the confidence intervals between two countries do not overlap, we can say that the mean scores of the two countries are statistically significantly different from each other.

Although the average South African Grade Six mathematics teacher has a similar level of mathematics content knowledge as Grade Six mathematics teachers in Malawi and Namibia (Figure 6 below), this indication of performance is deceptive. South African averages are uniquely misleading, and usually shroud large intra-national inequalities. If we instead split the South African sample into quintiles of school wealth (at the right of the graph) one can see that quintiles one, two and three perform 148 points below quintile five teachers. To put this in perspective, this difference amounts to 1.5 standard deviations of pupil mathematics scores which is roughly equivalent to three years’ worth of pupil learning.

Quintile five maths teachers in South Africa perform at the average level of teachers from the best performing countries in the sample, Kenya and Zimbabwe, while quintiles one, two and three maths teachers in South Africa perform at the average level of the worst performing countries in the sample, Lesotho, Zambia and Mozambique (Figure 6 below). Furthermore, the Grade Six mathematics teachers in the poorest 60 per cent of South Africa’s schools have statistically significantly less mathematics content knowledge than the average Grade Six teachers in Swaziland, Tanzania and Uganda. And this, despite the fact that the average school in the poorest 60 per cent of South African schools is considerably wealthier than the average school in Swaziland, Tanzania or Uganda, as measured by asset wealth of the pupil constituency (see Hungi, et al., 2010, p. 10 for box-plots of pupil socio-economic status across countries).
As one might expect, the socio-economic inequalities in South Africa are also reflected in school location (Figure 7 and Table 3 below). Grade Six maths teachers in rural South African schools have similar levels of content knowledge to Grade Six teachers in rural schools in Zambia, Lesotho and Mozambique. Grade Six mathematics teachers in urban schools have similar levels of mathematics content knowledge as Grade Six mathematics teachers in urban schools in Swaziland, Tanzania and Seychelles, although statistically significantly less knowledge than maths teachers in Kenya. It is also worth noting that South Africa is the only country where urban teachers have statistically significantly higher levels of mathematics content knowledge than rural teachers. In all other countries the differences are not statistically significant.

Figure 7: SACMEQ III (2007) Mathematicsteacher test score for SACMEQ countries by school location (urban and rural) including 95% confidence interval
One of the most striking features of the inequality in South Africa is that the best performing Grade Six pupils know more than some Grade Six teachers, albeit not their own teachers. In SACMEQ III (2007), the top 5 per cent of Grade Six pupils in South Africa (565 pupils) scored higher marks on the same mathematics test than the bottom 20 per cent of Grade Six mathematics teachers in the sample (80 teachers). Notwithstanding the above, 71 per cent of these 80 teachers reported that they had attended at least one short in-service training course in the last three years, with the median number of courses for these 80 teachers being two courses. Of those 80 who did attend a course, 75 per cent reported they were ‘effective’ or ‘very effective.’ Thus, the focus should rather be the actual, rather than the perceived, effectiveness of these courses.

In addition to not being able to teach what they do not know, there is a strong case to be made that teachers who lack an elementary understanding of the subjects they teach can actually do harm to their pupils. A lack of basic content knowledge amongst teachers, particularly those in rural areas and poorer schools, is a problem which should be urgently addressed. Those teachers who lack sufficient conceptual understanding of their subject are more likely to employ inappropriately concrete techniques when teaching and use methods that undermine the long-term learning trajectories of pupils. Notwithstanding the above, the available evidence suggests that the underperforming teachers in South Africa (which make up the majority) are unaware of their own learning deficits and do not understand the full demands of the curriculum. Consequently, they overestimate how well their children are performing relative to the curriculum and also their own proficiency as teachers. For example, a 2010 study of 45 primary schools in the Western Cape found that the average Grade Three teacher felt that at the beginning of the year only 55 per cent of their pupils were performing at the appropriate level for numeracy, but by the end of the year (after they had taught the pupils), they thought that 84 per cent were now performing at the appropriate level. Yet, in reality, only 22 per cent of their pupils were actually achieving at the appropriate level relative to the curriculum, as measured by the Western Cape Systemic Evaluations (WCED, 2010, p. 10).

In the recent TIMSS 2011 study, 89 per cent of South African Grade Nine teachers felt ‘very confident’ in teaching mathematics, in stark contrast to teachers in Finland (69 per cent very confident), Singapore (59 per cent very confident) and Japan (36 per cent very confident), the best performing countries (Mullis, Martin, Foy, & Arora, 2012, p. 314). This is particularly at odds with Grade Nine pupil performance, where 32 per cent of South African pupils perform worse than random guessing on the multiple choice questions. While it must be acknowledged that the confidence levels of teachers in most developing countries were higher than those in developed countries, the point remains that South African teachers overestimate their ability to impart the curriculum. This has important ramifications when considering the demand for teacher training, since teachers who believe that they possess adequate content knowledge or are sufficiently adept at teaching are far less likely to seek out professional development opportunities.

14 The ‘very confident’ average category corresponds to a teacher being ‘very confident’ in using three of the following five instructional strategies: 1) answer pupils’ questions about mathematics, 2) show pupils a variety of problem solving strategies, 3) provide challenging tasks for capable pupils, 4) adapt my teaching to engage pupils’ interest, 5) help pupils appreciate the value of learning mathematics. The possible responses were: very confident, somewhat confident, not confident. For further discussion see (Mullis, Martin, Foy, & Arora, 2012, p. 315).
Table 3: SACMEQ III (2007) Grade Six mathematics teacher mathematics test scores

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Grade Six teachers in sample</th>
<th>Mean maths score (pupil)</th>
<th>Maths score standard deviation (pupil)</th>
<th>Mean maths-teacher maths score</th>
<th>Linearised std error (maths teacher score)</th>
<th>Lower bound of 95% confidence interval</th>
<th>Upper bound of 95% confidence interval</th>
<th>Mean</th>
<th>Linearised std error (maths)</th>
<th>Mean</th>
<th>Linearised std error (maths)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botswana</td>
<td>343</td>
<td>521</td>
<td>80</td>
<td>81</td>
<td>780</td>
<td>5.3</td>
<td>769</td>
<td>790</td>
<td>776</td>
<td>7.4</td>
<td>784</td>
</tr>
<tr>
<td>Kenya</td>
<td>268</td>
<td>557</td>
<td>86</td>
<td>97</td>
<td>906</td>
<td>8.4</td>
<td>889</td>
<td>922</td>
<td>901</td>
<td>9.0</td>
<td>916</td>
</tr>
<tr>
<td>Lesotho</td>
<td>220</td>
<td>477</td>
<td>67</td>
<td>69</td>
<td>739</td>
<td>6.0</td>
<td>727</td>
<td>750</td>
<td>739</td>
<td>6.7</td>
<td>738</td>
</tr>
<tr>
<td>Malawi</td>
<td>155</td>
<td>447</td>
<td>63</td>
<td>95</td>
<td>762</td>
<td>8.4</td>
<td>746</td>
<td>779</td>
<td>765</td>
<td>9.2</td>
<td>754</td>
</tr>
<tr>
<td>Mozambique</td>
<td>373</td>
<td>484</td>
<td>71</td>
<td>81</td>
<td>745</td>
<td>5.9</td>
<td>734</td>
<td>757</td>
<td>748</td>
<td>9.7</td>
<td>744</td>
</tr>
<tr>
<td>Namibia</td>
<td>309</td>
<td>471</td>
<td>75</td>
<td>91</td>
<td>771</td>
<td>6.1</td>
<td>759</td>
<td>783</td>
<td>766</td>
<td>7.4</td>
<td>778</td>
</tr>
<tr>
<td>Seychelles</td>
<td>48</td>
<td>551</td>
<td>97</td>
<td>65</td>
<td>824</td>
<td>9.1</td>
<td>806</td>
<td>842</td>
<td>843</td>
<td>15.1</td>
<td>816</td>
</tr>
<tr>
<td>South Africa</td>
<td>498</td>
<td>495</td>
<td>98</td>
<td>109</td>
<td>766</td>
<td>6.3</td>
<td>753</td>
<td>778</td>
<td>730</td>
<td>7.5</td>
<td>805</td>
</tr>
<tr>
<td>Swaziland</td>
<td>180</td>
<td>541</td>
<td>61</td>
<td>92</td>
<td>811</td>
<td>7.3</td>
<td>797</td>
<td>826</td>
<td>811</td>
<td>8.4</td>
<td>812</td>
</tr>
<tr>
<td>Tanzania</td>
<td>228</td>
<td>553</td>
<td>84</td>
<td>78</td>
<td>825</td>
<td>5.8</td>
<td>814</td>
<td>837</td>
<td>823</td>
<td>7.5</td>
<td>831</td>
</tr>
<tr>
<td>Uganda</td>
<td>272</td>
<td>482</td>
<td>75</td>
<td>101</td>
<td>832</td>
<td>7.2</td>
<td>818</td>
<td>847</td>
<td>830</td>
<td>8.4</td>
<td>837</td>
</tr>
<tr>
<td>Zambia</td>
<td>265</td>
<td>435</td>
<td>68</td>
<td>89</td>
<td>739</td>
<td>6.8</td>
<td>725</td>
<td>752</td>
<td>745</td>
<td>9.1</td>
<td>726</td>
</tr>
<tr>
<td>Zanzibar</td>
<td>251</td>
<td>486</td>
<td>64</td>
<td>69</td>
<td>685</td>
<td>5.5</td>
<td>674</td>
<td>695</td>
<td>682</td>
<td>7.0</td>
<td>689</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>274</td>
<td>520</td>
<td>98</td>
<td>97</td>
<td>852</td>
<td>7.5</td>
<td>837</td>
<td>867</td>
<td>860</td>
<td>9.5</td>
<td>834</td>
</tr>
</tbody>
</table>
National Senior Certificate performance: retention and subject-choice

The school-leaving National Senior Certificate (NSC) matriculation exam is one of the most characteristic features of the South African education system. It would be rare to find a single South African citizen who did not know what the ‘matric’ exam is, or be able to explain why people think it is important. The annual publication of individual-level NSC results in South African newspapers further adds to the public awareness and concern around NSC performance. Chief among the statistics reported is the NSC pass rate; the proportion of Grade 12 pupils that pass the NSC exam. While many critics have pointed out that the matric pass requirements are sub-standard and encourage mediocrity (Jansen, 2012), arguably the more serious problem is widespread drop-out pre-Grade 12 and that over time more pupils seem to be choosing less demanding NSC exam subjects.

The focus of this section will be on the trends in retention-to-matriculation and on changes in the proportion of pupils taking and passing mathematics in the last four years. The analysis in this section draws heavily from the work of Dr. Stephen Taylor (2012), an expert on NSC trends. All graphs and tables are drawn from his work or based on his figures.

Retention-to-matriculation

Given that the calculation of the NSC pass rate does not take into account any information about enrolment or drop-out pre-Grade 12, it is particularly open to abuse and manipulation. Furthermore, since passing the NSC can be achieved with a variety of different subject combinations (some easier than others), it is also possible to increase the pass rate by encouraging pupils to select easier subjects. Commenting on the 1999-2003 period, Nick Taylor (2011) explains that this is exactly what happened:

Because the pass rate is a ratio consisting of two numbers – numbers of passes as a fraction of numbers of candidates – it can be improved by changing either or both these quantities. In the period 1999 to 2003 the one that was changed was the number of candidates: fewer children were given the opportunity to write matric whereas the number of passes stayed about the same. The result was that the pass rate went up and the government claimed victory... Ironically, although the 1999 to 2003 period received public approval for its increased pass rate, this was a period of declining quality that was achieved in two ways: encouraging candidates to register at the easier standard-grade level and lowering standards by making the examination papers easier, focusing largely on cognitive skills of an elementary nature at the expense of the higher-order processes of analysis and interpretation. In short, improved efficiency can be achieved by restricting opportunity or by compromising quality, or both, and this is what happened at the time.

A closer inspection of school administrative data shows that there is far less drop-out between Grade One and Grade 10 as compared to that between Grades 10 and 12. For example, using administrative data on Grade Two enrolments from 2000, 2001 and 2002, and comparing this to administrative data

15 Grade two enrolments are a better indication of the true cohort size since there is often a lot of early entry and repetition in one leading to an over-estimation of the cohort size if one uses Grade One.
on Grade 10 enrolments 10 years later (2009, 2010 and 2011) shows that there were, on average, 1 086 424 pupils enrolled in Grade Two (2000, 2001 and 2002), and 1 069 616 pupils enrolled in Grade 10 a decade later (2009, 2010, 2011) showing very little drop-out over the first 10 grades. While crude comparisons such as these do not take into account changing grade repetition patterns, they are still useful when considering pre-Grade 12 enrolments.

By contrast, Figure 8 below shows the trend in Grade 10 enrolments and Grade 12 enrolments since 1994. Taylor (2012, p. 6) shows that the gap between Grade 10 enrolments and Grade 12 enrolments has been growing over time, partially due to decreasing grade repetition in earlier grades and increasing grade repetition in Grade 10. Especially noticeable is that the number of pupils enrolled in Grade 12 has remained relatively stagnant since 1994, and as a rule of thumb is around half the size of the cohort who started schooling 12 years earlier. The fact that more and more pupils are reaching grade ten but not reaching Grade 12 is cause for concern. Promoting pupils through the system, who have not acquired the grade-appropriate competencies as they go, misrepresents to pupils and parents the true learning that is occurring at school. In light of this, there is a strong case to be made for better gate-keeping and certification at key grades prior to Grade 12, such as Grade Nine.

Figure 8: Enrolments in Grade 10 and Grade 12 since 1994 (Source: Taylor, 2012, p. 6)

As in any sphere of South Africa, rates of retention-to-matriculation differ widely across provinces. Figure 9 below shows the ratio of NSC passes to Grade Two enrolments 10 years earlier for each of the nine provinces for the period 2004 - 2011. Alarmingly, in the Eastern Cape only 20 per cent of Grade Two pupils from the 2001 cohort went on to pass the NSC exam in 2011, compared to 60 per cent in Gauteng and 50 per cent in the Western Cape. These ‘conversion rates’ provide a good indication of the quality of education offered to pupils in these provinces. While one should be aware of the differing socio-economic profiles of the provinces, the fact that equally poor provinces with similar geographical, sociological and historical profiles have different conversion rates is testament to the fact that schools and provincial administrations can make a difference.

Figure 10 shows the same situation for the country as a whole, while adding detail about the proportions taking mathematics as well as the numbers passing mathematics. The graph clearly shows...
the substantial drop-out between Grades 10 and 12, and the declining proportion of pupils taking mathematics. Given that pupils must take either mathematics or mathematics literacy, the decline in pupils taking mathematics from 56 per cent in 2008 to 45 per cent in 2011 will necessarily be associated with an increase in the proportion taking mathematics literacy. Table 4 shows the number of pupils writing and passing mathematics since 2008, as well as the proportion of the Grade 12 cohort that takes mathematics and the proportion of the cohort that passes mathematics. Given that declining numbers of pupils are taking mathematics, it is unsurprising that the absolute number of pupils passing NSC mathematics has declined from 136 503 in 2008 to 104 033 in 2011.

Figure 9: The ratio of Grade Two enrolments 10 years prior to Grade 12 relative to NSC passes by province (Source: Taylor, 2012, p. 9)
Figure 10: Retention to matriculation, NSC passes and mathematics participation and performance (Data sourced from Taylor, 2012)

Table 4: Mathematics outputs since 2008 (Source: Taylor, 2012, p. 4)

<table>
<thead>
<tr>
<th>Year</th>
<th>Numbers wrote maths</th>
<th>Numbers passed maths</th>
<th>Maths pass rate</th>
<th>Proportion taking maths</th>
<th>Proportion passing maths</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>298 821</td>
<td>136 503</td>
<td>45,7%</td>
<td>56,1%</td>
<td>25,6%</td>
</tr>
<tr>
<td>2009</td>
<td>290 407</td>
<td>133 505</td>
<td>46,0%</td>
<td>52,6%</td>
<td>24,2%</td>
</tr>
<tr>
<td>2010</td>
<td>263 034</td>
<td>124 749</td>
<td>47,4%</td>
<td>48,8%</td>
<td>23,2%</td>
</tr>
<tr>
<td>2011</td>
<td>224 635</td>
<td>104 033</td>
<td>46,3%</td>
<td>45,3%</td>
<td>21,0%</td>
</tr>
</tbody>
</table>
One final point on NSC performance that is worth noting is the current simplistic view that a successful South African education system is one where all children reach Grade 12 and pass the NSC exam. Such an approach ignores the potential value of an effective vocational education system or a pre-NSC qualification that is a reliable indicator of achievement, both of which South Africa currently lacks. Developing an effective vocational education system is necessary both for individuals whose talents, abilities and aptitudes are more suited to vocational careers, but also to fill the demand from industry for these professions.

Inequality of educational opportunity

Any discussion of South African education would be patently incomplete without some reference to the high levels of inequality that plague the country and permeate every element of the schooling system. This is nowhere more noticeable than in educational outcomes, ranging from a very few schools which perform at internationally-comparable levels of achievement, all the way down to a majority of schools which cannot impart even the most basic numeracy and literacy skills to their pupils.

It is now commonly accepted that when looking at pupils performance in South Africa there is a minority of pupils (roughly 25 per cent) who perform significantly better than the majority of pupils (roughly 75 per cent) who perform extremely poorly on these tests (Van der Berg, 2007; Fleisch, 2008; Spaull, 2013). Before turning attention to the bimodality of performance, it is worth noting that the better performing group of wealthier schools is still underperforming by international standards. Figure 11 below shows that in TIMSS 2003 the wealthiest 20 per cent (quintile) of South African schools performs slightly worse than the national distribution for Chile, noticeably worse than Chile’s quintile five distribution and considerably worse than Singapore’s national or quintile five performance. As Taylor (2012b) notes ‘When one considers that Chile performed well below the international average in TIMSS, this suggests that even the better-performing part of the South African system may not be achieving at a comparable level with developed countries.’
The above situation of two distinct groups performing very differently to each other – one underperforming relative to international standards, the other performing far worse at abysmally low levels – creates a bimodal distribution of achievement in the country. This bimodality can be seen when splitting the sample by wealth quartiles (Spaull, 2013 – see Figure 12 below), school language (Shepherd, 2011), and former-department (Taylor S., 2011). This is unsurprising, given the strong correlations between language, socio-economic status and school currently attended.

Importantly, the bimodality of South African pupil performance is not a product of data-mining but rather a feature of every nationally representative dataset that exists for South Africa. It is impervious to the grade or subject under assessment or the dataset under analysis. It can be seen as early as Grade Three (Taylor, 2011a), and remains unabated until the national school leaving exam (Van der Berg, 2007).

Figure 12: Distribution of Grade Six Reading Performance by School Wealth Quartile (Data: SACMEQ III 2007, see Spaull, 2013)
As a result of the bimodal distribution, the median achievement level is significantly lower than the mean achievement level – that is to say that the better performing 25 per cent of pupils raise the extremely low average of the bottom 75 per cent. Consequently, national averages overestimate the performance of the majority of South African pupils since the distribution is skewed to the right. Because of this, the ‘average’ South African pupil does not exist in any meaningful sense. However misleading this measure is, the national and provincial averages of pupil performance remain the most commonly reported measure of achievement in government and international reports.

These high levels of inequality can also be seen when comparing achievement levels across provinces or geographical locations. For example, the latest TIMSS (2011) study showed that the average Grade Nine pupil in KwaZulu-Natal was 2.5 years’ worth of learning behind the average Grade Nine pupil in the Western Cape for Science, and that the average Grade Nine pupil in the Eastern Cape is 1.8 years’ worth of learning behind the average pupil in Gauteng. Similarly, prePIRLS (2011) showed that Grade Four pupils from rural areas and townships are two to two and a half years behind urban children in reading (Howie & van Staden, 2012). SACMEQ (2007) showed that the inter-provincial differences in functional literacy rates are substantial. While only 5 per cent of pupils in the Western Cape are functionally illiterate, 49 per cent of pupils in Limpopo and 39 per cent of pupils in the Eastern Cape were thus classified.

One way of measuring and comparing educational inequality across countries is to calculate what proportion of the variation in reading and mathematics achievement is explained by a pupil’s socio-economic background. If a high proportion of the variation in achievement is explained by family background and socio-economic status, this means that we can predict educational success or failure based largely on non-schooling factors, like parental education and income. Figure 13 and Figure 14 below show this relationship for the 15 education systems that took part in SACMEQ III (2007). The x-axis shows the proportion of the variation in pupil achievement that is explained by an index of asset wealth (whether or not pupils had 31 possessions in their homes) and the square of this asset index, mother’s education, father’s education and the number of books at home – collectively defined as socio-economic status. One can see that countries such as Tanzania and Swaziland perform well in that they have high quality (SACMEQ scores) and high equity (low proportion of variation explained by socio-economic status). In contrast, South Africa performs slightly below average in terms of quality, but is the most inequitable country by a large measure. More than 30 per cent of the variation in pupil reading and mathematics achievement in South Africa can be explained by socio-economic status alone. Many countries, both rich (Japan, Finland, Canada) and poor (Tanzania, Kenya, Swaziland), manage to provide quality education to all pupils, not only the rich, and thus they show that ‘poor performance in school does not automatically follow from a disadvantaged background’ (Schleicher, 2009, p. 253), as indeed it does in South Africa.

As Schleicher (2010) explains, the strength of the relationship between social background and educational outcomes is a good indication of how well a country is utilising its human capital potential. If the relationship is strong – as it is in South Africa (i.e. socio-economic status largely determines outcomes) – this means that a country is wasting a lot of its human capital potential.
Figure 13: Reading performance in SACMEQ III (2007) and the impact of socio-economic background

Figure 14: Mathematics performance in SACMEQ III (2007) and the impact of socio-economic background
Insurmountable learning deficits

One of the characteristic features of the South African education system is its almost single-minded focus on the National Senior Certificate (NSC), the school-leaving matriculation exam for Grade 12. There are a variety of reasons for this but the most important one is that it is the only nationally standardised, externally set, and independently moderated exam in the school system. As a result the NSC exam is seen as a relatively trustworthy indication of actual achievement, and until recently, was used as the sole criterion for university entrance. Every year there is widespread debate about the quality of education in South Africa with the matric results usually taking centre stage. In response to the public’s emphasis on NSC results, the Department of Basic Education as well as many NGO’s usually channel additional resources towards interventions at secondary school level, and specifically those that focus on NSC outcomes. However, this focus on Grade 12 and the few years preceding is especially short-sighted.

All of the available evidence suggests that many South African children are acquiring debilitating learning deficits early on in their schooling careers and that this is the root cause of underperformance in later years. Because they do not master the elementary numeracy and literacy skills in the foundation and intermediate phases, they are precluded from further learning and engaging fully with the grade-appropriate curriculum. Lewin (2007, p. 23) refers to these children as ‘silently excluded’ since their achievement is so low that they cannot follow the curriculum. Taylor et al. (2003, p. 129) concur:

> At the end of the Foundation Phase, learners have only a rudimentary grasp of the principles of reading and writing... it is very hard for learners to make up this cumulative deficit in later years...particularly in those subjects that...[have] vertical demarcation requirements (especially mathematics and science), the sequence, pacing, progression and coverage requirements of the high school curriculum make it virtually impossible for learners who have been disadvantaged by their early schooling to ‘catch-up’ later sufficiently to do themselves justice at the high school exit level.’

The SACMEQ III survey, which was conducted in 2007, showed that 40 per cent of Grade Six South African pupils were ‘non-numerate’ since they had not moved beyond the mechanical skills related to basic calculation and simple shape recognition (Shabalala, 2005, p. 225; Spaull, 2011b, p. 40). These pupils could not translate graphical information into fractions or interpret simple common everyday units of measurement (Hungi, et al., 2010). Given this state of affairs, it is unsurprising that three grades later, 76 per cent of South African Grade Nine pupils did not reach the low international benchmark in TIMSS 2011. These pupils could not do basic computations or match tables to bar graphs or read a simple line graph. They had not acquired a basic understanding about whole numbers, decimals, operations or basic graphs (Mullis, Martin, Foy, & Arora, 2012, p. 121).

The results for literacy, while not as bad, are still dire. SACMEQ III (2007) showed that 27 per cent of Grade Six pupils were functionally illiterate since they could not go beyond decoding text and matching words to pictures, i.e. they could not interpret meaning in a short and simple text (Shabalala, 2005, p. 222). It is important to remember that these are national averages which shroud significant regional and socio-economic inequalities, as has been discussed earlier.
Two recent initiatives of the national Department of Basic Education indicate that the DBE is beginning to focus on the primary grades. These are the Annual National Assessments (ANAs) and the national workbooks, both introduced in 2011. Similarly, the Western Cape Education Department has, for a number of years already, begun to focus on early grade numeracy and literacy.

The need to focus on the primary grades (and pre-primary grades) is not only driven by the fact that underperformance is so widespread in these phases, but also because remediation is most possible and most cost-effective when children are still young. This is primarily because the human brain is most plastic and malleable in early childhood and thus particularly susceptible to beneficiation or harm. Also, due to the cumulative negative effects of learning deficits (particularly for vertically-integrated subjects like mathematics), it is not usually possible to fully remediate pupils if the intervention is too late (i.e. in high school), as too many South African interventions are. The Nobel economist Prof James Heckman explains this concept particularly succinctly:

> Policies that seek to remedy deficits incurred in early years are much more costly than early investments wisely made, and do not restore lost capacities even when large costs are incurred. The later in life we attempt to repair early deficits, the costlier the remediation becomes (Heckman, 2000, p. 5).

Notwithstanding the above, the notion that the biggest problem in South African education is actually at the primary level, rather than just the secondary level is still largely confined to research and policy-advising institutions.

In order to understand these cumulative deficits, and how insurmountable they become over time, it is instructive to provide tangible examples. For this report, Spaull did calculations using three different surveys for Grade Three (NSES 2007), Grade Four (NSES 2008), Grade Five (NSES 2009), Grade Six (SACMEQ 2007), and Grade Nine (TIMSS 2011). This provided the likely trajectories of learning for the average pupil in the Eastern Cape (Figure 14), and the average pupil in the Western Cape (Figure 16) relative to some benchmark of desired achievement – the average quintile five pupil in South Africa. Adapting Lewin’s (2007, p. 8) conceptual framework, the achievement levels of the average pupil in the Eastern Cape and the Western Cape relative to quintile five performance in each dataset in each grade were calibrated. In order to provide some measure of comparison, the average achievement level of quintile five pupils in each survey is equated to the grade-appropriate level of performance. This constitutes the ‘on-track’ line and represents the trajectory needed to reach the desired goal – matriculation. In reality, the curriculum specifications for each grade will be higher than the average quintile five achievement since not all quintile five pupils reach the demands of the curriculum. Nevertheless, it is still useful as one benchmark of performance.

For each dataset Spaull calculated the difference between the average provincial test score and the average quintile five test score and converted this into ‘years of learning’. This is based on the assumption that one grade-level of learning is equivalent to roughly half a standard deviation of pupil test scores in that survey. This benchmark has been used elsewhere in the literature, for example Reddy et al. (2012, p. 3) explain that TIMSS treats 40 points as equivalent to one grade level of learning. This is roughly equal to half a standard deviation in South Africa. Similarly, PIRLS also treats 40 points as equivalent to one year of learning since Howie and van Staden (2012, p. 39) explain that, according to prePIRLS 2012, Grade Four children in rural areas are 2.5 years behind Grade Four children in urban areas, a 102 point difference (also see Hill, Bloom, Black, & Lipsey, 2007).
Another useful sense-check for determining whether or not 0.5 standard deviations is equivalent to one year of mathematics learning is to use the National School Effectiveness Study (NSES). In the NSES, the same pupils were tested in Grade Three, Four and Five at the end of 2007, 2008 and 2009 respectively. Thus one can see the increase as a percentage of the previous years’ standard deviation. From Grade Three to Four there was a 0.34 standard deviation increase in the national average (and a 0.5 standard deviation increase in the Western Cape) and from Grade Four to Five there was a 0.52 standard deviation increase in the national average (and 0.58 standard deviation increase in the Western Cape). Thus, while there is some variation in the increase in test score year on year, it would seem that using 0.5 standard deviations as roughly equivalent to one year of learning is a reasonable assumption. It is worth noting that 0.5 standard deviations represents one year of learning for the benchmark pupil, i.e. the amount of learning that should take place in a single year.

Figure 14 below shows the gradients of achievement in the Eastern Cape relative to a benchmark level of ‘adequate’ performance – the national average of quintile five schools in this instance. By construction, the ‘on-track’ line shows the necessary gradient of achievement that pupils must follow if they are to reach the desired goal – matriculation. This was calibrated to be the average performance of quintile five pupils in each survey. As early as Grade Three, one can see the large discrepancy between the average child in the Eastern Cape relative to the grade-appropriate benchmark (quintile five). This learning deficit grows as the child gets older, and by the time they have reached Grade Nine, they are almost three full grades worth of learning (2.8 years) behind the benchmark (Table 2 below), well-below the on-track line. Most importantly, any performance below the ‘on-track’ line creates an increasing gradient of expectation as the pupil moves into higher grades. As pupils’ learning deficits grow, the gradient of what needs to be achieved then progressively steepens to the point where it enters what Lewin (2007, p. 7) refers to as a ‘Zone of Improbable Progress.’ For example, the improvement that is required to bring the average Grade Ten pupil in the Eastern Cape up to the required benchmark by Grade 12 is unrealistic. By contrast, the gradient of achievement required to bring the average Grade Three pupil up to the required benchmark by matric is manageable. Intervening early to correct and prevent learning deficits is the only sustainable approach to raising average achievement in under-performing regions.

Figure 16 replicates the above approach but now for the Western Cape. The average national quintile five performance is still the benchmark that is used as a proxy for grade-appropriate performance. The situation presented here is in stark contrast to that of the Eastern Cape. The trajectory of provincial progress in the Western Cape (the ‘off-track’ line) is never very far below the ‘on-track’ benchmarking line. Although the average pupil is performing slightly below the benchmark, this under-achievement is never more than one grade-level’s worth of learning. It should be noted that the

16 It must be noted that the NSES tests were set at the Grade Three level (pupils wrote the same test in each successive grade), and thus one would expect the gains made year on year to overestimate the true gains that would have been made if the tests were set at the grade-appropriate level. One should not place too much emphasis on the specific measure of 0.5 standard deviations as being equivalent to one year of learning, since it is a somewhat arbitrary measure. The primary reason for using it is to make the surveys comparable over time, and to convert raw scores which are difficult to interpret meaningfully, into years of learning – a measure that has considerable conceptual purchase. Furthermore, given that the analysis here uses two relative measures of performance within the same survey (both the standard deviation – which is relative by construction – and the relative performance between quintile five and the Eastern/Western Cape), any inter-survey characteristics (such as different difficulty levels, time of year etc.) are cancelled out and make the comparisons valid. The only binding assumption that one needs to make is that the relative performance of provinces and quintiles remains constant over the five year period 2007-2011 of these surveys, or has changed very slowly over this period. Given the slow dynamics of education system change this assumption seems entirely plausible.
learning trajectory of the Western Cape will be closer to the on-track line by construction since there
there is a disproportionately high amount of quintile five schools in the Western Cape.

Table 5 below provides the scores and standard deviations for each survey used in the analysis.
Figure 15: Gradients of achievement in the Eastern Cape and in quintile five (National)

Performance below “on-track” line creates increasing gradient of expectation

Initial conditions

On-track line

Off-track line

Desired goal

C.f. Lewin (2007: 8)

Figure 16: Gradients of achievement in the Western Cape and in quintile five (National)

Performance below “on-track” line creates increasing gradient of expectation

Initial conditions

On-track line

Off-track line

Desired goal

C.f. Lewin (2007: 8)
Table 5: Relative performance of the Eastern Cape, Western Cape and national quintile five schools for Grades Three, Four, Five, Six and Nine

<table>
<thead>
<tr>
<th></th>
<th>Grade 3 (NSES 2007)</th>
<th>Grade 4 (NSES 2008)</th>
<th>Grade 5 (NSES 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Score</td>
<td>National std. dev</td>
<td>Years behind Q5</td>
</tr>
<tr>
<td>Eastern Cape</td>
<td>26,4</td>
<td>22</td>
<td>1,8</td>
</tr>
<tr>
<td>Western Cape</td>
<td>36,7</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>National Quintile 5</td>
<td>46,4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Grade 6 (SACMEQ III 2007)</th>
<th>Grade 9 (TIMSS 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Score</td>
<td>National std. dev</td>
</tr>
<tr>
<td>Eastern Cape</td>
<td>469</td>
<td>98</td>
</tr>
<tr>
<td>Western Cape</td>
<td>566</td>
<td>0,4</td>
</tr>
<tr>
<td>National Quintile 5</td>
<td>584</td>
<td>0</td>
</tr>
</tbody>
</table>
South Africa has one of the highest youth unemployment rates in the world (Biavaschi et al., 2012, p. 10). Approximately 50 per cent of all 18-24-year-olds were unemployed by the end of 2011 and the youth currently accounts for about 30 per cent of all the unemployed in the country, despite the fact that the cohort constitutes only 22 per cent of the working-age population. These figures are all the more staggering given that the International Labour Organisation’s (ILO) estimates of the global and sub-Saharan youth unemployment rates for 2011 are only 12.6 per cent and 11.5 per cent, respectively (ILO, 2012, p. 15). The bleak labour market prospects faced by many of the country’s young people is partly attributable to insufficient job creation in the economy since 1994 in conjunction with long and lengthening job queues queues which are often already occupied by older, more experience job-seekers (NPC, 2011, p. 345). However, the severity of South Africa’s youth unemployment is largely the result of a pervasive lack of appropriate skills, competencies and work-relevant capacities among young labour market entrants (Perold et al., p. 2).

The general lack of skills and employability among South Africa’s youth is one of the perverse consequences of the poor quality of education received – predominantly by black and coloured pupils – in large segments of the country’s primary and secondary schooling systems (Smith, 2011, p. 7; Cloete, 2009, p. 3; Sheppard and Cloete, 2009, p. 60). Moreover, due to the widespread failure of the sector education and training authorises (SETAs), the poor quality of many FET colleges, stringent entry requirements and capacity constraints at higher education institutions, and the ‘low participation-high attrition’ nature of the tertiary education system as a whole, opportunities for remedial training or further formal skills acquisition after leaving secondary school in South Africa remains limited (Fisher and Scott, 2011, p. 1; Mayer et al., 2011, p. 42; Cloete, 2009, p. 10).

Collectively, the aforementioned factors imply that few South African youths manage to successfully transition into employment or tertiary education and training once they have left the secondary schooling system. This reality is reflected in the finding that South Africa had 3.2 million 18-24-year-olds who were not in education, employment or training (NEET) in 2010 – more than double the 1.25 million 18-24-year-olds who were enrolled at universities or FET colleges (Cloete and Butler-Adam, 2012, p. 3). In fact, Figure 16 shows that, since 2002, more than 40 per cent of 18-24-year-olds in South Africa have been NEET, with the percentage of youths enrolled in some form of education decreasing by 14 percentage points from 50 per cent in 1995 to 36 per cent in 2007. It is alarming to note that, with the exception of 1999 to 2002, the percentage of youths in employment has consistently been below 20 per cent over the 1995–2011 period.
Since 1995, the average number of years of educational attainment among 18-24-year-olds in the country has increased by about 0.83 years. However, while there has been a significant increase in the absolute number of youths enrolling at tertiary training institutions between 1995 and 2010, particularly for the black population, these increases have generally been in line with the rise in the size of South Africa’s youth population over the period (Smith, 2011, p. 12). As Figure 18 therefore shows, the increase in the average level of educational attainment among the youth has largely been driven by the 9 percentage point increase in the proportion who complete Grade 12 as their highest level of education, up from 25 per cent in 1995 to about 34 per cent in 2011. At the same time, changes in the proportions of youths with some form of tertiary qualification have been statistically negligible, with the percentage of youths with post-secondary diplomas or certificates and those with bachelor’s degrees or higher remaining low at around 3 per cent and 1 per cent respectively.
Figure 18: Composition of 18-24-year-olds by highest level of education completed

Source: Own calculations, OHS 1995 – 1999, LFS 2000a – 2007b, QLFS2008Q1 – QLFS2011Q4. Notes: Estimates are weighted and are calculated only for 18-24-year-olds. ‘Less than Matric’ includes all individuals with between 0 years of schooling and completed grade 11. ‘Diplomas’ include all post-secondary certificate and diploma qualifications or their equivalents. ‘Degrees’ include all Bachelor’s degrees or higher qualifications.

On the basis that numerous studies have shown that better-educated individuals also face better labour market prospects in terms of lower unemployment rates, shorter spells of unemployment and higher probabilities of procuring full-time employment (Branson, Leibbrandt, and Zuze, 2009, p 45; Cloete, 2009, p. 5-6), the finding that the proportion of 18-24-year-olds who complete Grade 12 is increasing over time may lead one to expect that youth unemployment has also improved over time. However, Figure 19 reveals that the narrow unemployment rate for 18-24-year-olds has actually increased by 38 per cent since 1995, from 36 per cent in 1995 to 50 per cent in 2011.

The graph also reveals a number of other alarming features and trends. First, despite short-term fluctuations, it appears as though the youth unemployment rate across all education cohorts in the group is on a long-term upward trend. Second, while the youth unemployment rate has increased rapidly for all education cohorts since 2008, the increases appear to have been greatest for young people with tertiary qualifications. Third, the unemployment rates for 18-24-year-olds with post-secondary diplomas or certificates have consistently been much lower than those for youths who only passed the NSC exam or have lower levels of attainment. However, since 1999, the unemployment rates for this group have also consistently been higher than the unemployment rate for the full working-age population. In fact, by 2011, even the unemployment rate for 18-24-year-olds with degrees had risen above the overall national unemployment rate of 25 per cent. Finally, and perhaps most disconcertingly, Figure 19 shows that the unemployment rates for 18-24-year-olds with NSC and those with less than the NSC – a group which is about 90 per cent black – appear to be almost

20 It is important to note that, because of the small relative size of the group of tertiary-qualified 18-24-year-olds and the consequent small sample size of tertiary-qualified 18-24-year-olds included in the labour force surveys on which these estimates are based, the confidence intervals within which point estimates of the tertiary-qualified youth unemployment rates lie are very large and small changes in the survey data can lead to large changes in aggregate outcomes. Furthermore, one must be cautious when interpreting the ‘degree’ and ‘diploma’ categories since some individuals in this cohort may still be studying towards, but have not yet completed, their graduate studies. For a more detailed and comprehensive treatment of graduate unemployment in South Africa please see CDE’s April 2013 publication: GRADUATE UNEMPLOYMENT IN SOUTH AFRICA: A much exaggerated problem.
equal. In truth, the estimates of the unemployment rates for matriculated youths is on average about 3 percentage points lower than the estimated unemployment rates for 18-24-year-olds with less than the NSC, but there are a number of years in which the differences between the estimates of the two rates are not statistically significant. This finding contrasts sharply with the often-held belief that matriculation significantly reduces the chances of being unemployed in South Africa (Smith, 2011, p. 8).

Figure 19: Narrow unemployment rates for 18-24-year-olds by highest level of education completed

![Graph showing unemployment rates by education level](source)

In addition to a rise in unemployment rates among 18-24-year-olds between 1995 and 2011, increases in the average duration of unemployment spells experienced by the youth in recent years suggest that school-to-work transitions in South Africa may be becoming increasingly difficult. Figure 20 shows that by 2011, more than 70 per cent of 18-24-year-olds in unemployment had never been employed before. Even for individuals with tertiary qualifications, there has been an almost 15 percentage point rise in the percentage of youths who had never worked before from about 35 per cent in 2008 to almost 50 per cent in 2011. Similarly, Figure 21 shows that there has been a decrease in the proportion of unemployed youths that have been unemployed for less than a year and an increase in the percentages that have been unemployed for between one and five years. In fact, the proportion of job-seeking youths that have been unemployed for more than three years has increased from around 42 per cent in 2008 to 50 per cent in 2011. These findings correspond with those from previous studies that have noted the high and/or increasing average durations of youth unemployment spells in South Africa since 1995 (Mayer, 2011, p.p. 21 – 22; Rankin et al, 2007).
The adverse trends in the prevalence and duration of youth unemployment suggest that the youth’s ability to procure employment may be deteriorating over time. Figure 22 shows that, while the employment rate for 18-24-year-olds remained low at around 20 per cent, between 1995 and 2011 there are no clearly discernable
long-term trends in youth labour force absorption for any of the education cohorts shown.21 In the more recent short run, however, there has been a clear downward trend in the percentage of young people in employment in the country, a trend which, again, appears to have been most pronounced for tertiary-educated 18-24-year-olds. In contrast to youth unemployment rates, the employment rate for those who pass the NSC exam is 10 and 12 percentage points higher than the employment rate for youths with less than the NSC. This is largely driven by the fact that a greater proportion of 18-24-year-olds with the NSC participate in the labour force and, therefore, a greater proportion are employed. However, for those youths who are actively looking for work, matriculating without also continuing with tertiary education does not noticeably improve employment prospects relative to those with less than the NSC.

Figure 22: Percentage of youth in employment by highest educational attainment

![Percentage of youth in employment by highest educational attainment](image)

Source: Own calculations, OHS 1995 – 1999, LFS 2000a – 2007b, QLFS2008Q1 – QLFS2011Q4. Notes: Estimates are weighted and, with the exception of the series for the working-age population, are calculated only for 18-24-year-olds. ‘Less than Matric’ includes all individuals with between 0 years of schooling and completed grade 11. ‘Diplomas’ include all post-secondary certificate and diploma qualifications or their equivalents. ‘Degrees’ include all Bachelor’s degrees or higher qualifications.

To contextualise the trends in youth labour market outcomes between 1995 and 2011, Figure 23 shows the average annual changes in the proportion of 18-24-year-olds in the labour force, employment, NEET, unemployment and education between 1995 and 2011 alongside the corresponding changes for the working-age population. The graph reveals that, while the labour force participation rate among 18-24-year-olds increased by about 0.7 per cent, on average, per annum, the change in the proportion of youths who manage to procure employment between 1995 and 2001 has been statistically negligible. Instead, the increase in youth labour force participation in combination with increasingly adverse labour market conditions has contributed to an annual 1 per cent average increase in the proportion of youths that are unemployed and an annual 1.6 per cent average increase in the proportion that are NEET. At the same time, there has also been a decrease in proportion of 18-24-year-olds enrolled in primary, secondary or tertiary education. Burger, van der Berg, and von Fintel (2012) explain that these changes may at least partly be the result of restrictions on over-aged pupils and grade-repetition that were implemented in schools during the 1990s, which not only

21 The employment rate is also sometimes referred to as the labour force absorption rate and denotes the number of employed individuals as a percentage of the number of individuals in the population under consideration.
resulted in a decrease in the number of 18-24-year-olds enrolled in education, but also lead to a rapid increase in labour force participation and, consequently, unemployment among the youth.

Figure 23 also shows that, while the direction of changes in youth labour market outcomes have generally mirrored those for the working-age population (with the exception of the growth in the proportion of employed individuals of working-age), the growth in unemployment and NEET over the period have been far more pronounced for 18-24-year-olds, highlighting the fact that the youth are particularly vulnerable to adverse economic changes.

Figure 23: Estimated average annual changes in the proportion of individuals in the labour force, employment, NEET, unemployment, and education for 18-24-year-olds and the working-age population (1995 - 2011)

In acknowledgement of the risks posed by the increasingly adverse labour market and tertiary education prospects faced by the youth, the National Planning Commission has formulated a number of proposals for improving post-school youth outcomes in the 2030 National Development Plan. These range from doubling the number of eligible learners for bachelors studies with maths and science, increasing the FET college participation rate for 20-24-year-olds from its present 3 per cent to 25 per cent while simultaneously raising graduation rates from 40 per cent to 75 per cent by 2030, and achieving a 25 per cent tertiary education graduation rate while also increasing the number of enrolments in higher education by 70 per cent (NPC, 2011, pp. 270-276). However, the National Development Plan also notes that South Africa’s present tertiary participation rate of 17 per cent (13 per cent for blacks and coloureds) remains far lower than that for other comparable middle-income countries, that about 65 per cent of college pupils do not obtain any workplace experience while studying, and that FET colleges currently have a throughput rate of only about 4 per cent (NPC, 2011, pp. 270-276). These factors, along with the aforementioned adverse changes in the labour market outcomes for 18-24-year-olds since 1995, imply that achievement of the NDP’s rather ambitious targets for the improvement of youth outcomes will require concerted efforts towards not only improving the
quality and capacity of the tertiary education system, but, perhaps more importantly, also improving the quality of South Africa’s primary and secondary schooling system.

In order to highlight the nature of the youth’s transition from school to work or education as discussed above, the key conclusions from this section can be summarised as follows:

• Poor quality schooling at the primary and secondary level in South Africa severely limit the youth’s capacity to exploit further training opportunities. As a result, existing skills deficiencies among those who are the product of an underperforming school system (predominantly blacks) are likely to persist.

• South Africa’s narrow youth unemployment rate of 50 per cent is staggeringly high, both in the context of far lower average global and sub-Saharan youth unemployment rates and in terms of the country’s already high aggregate narrow unemployment rate of 25 per cent.

• The percentage of 18-24-year-olds who are not in education, employment or training (NEET) has increased from about 30 per cent in 1995 to 45 per cent in 2011 while the percentage enrolled in education has decreased from 50 per cent to 36 per cent and the percentage of youths in employment remained fairly constant at between 17 per cent and 19 per cent. As such, there appears to have been a shift away from participation in education in favour of either economic inactivity or unemployment among the youth.

• Youth unemployment in the country is not only high, but has risen precipitously since 2008, following a national trend of worsening unemployment. Moreover, the nature of unemployment experienced by the youth appears to be becoming more severe in terms of an increase in the proportion of unemployed youths that have never worked and the proportion that have been looking for work for more than a year.

• For the youth, passing the NSC does not provide sufficient assurance against becoming unemployed, nor does it markedly increase one’s chances of procuring employment relative to 18-24-year-olds that have lower than NSC levels of educational attainment. Instead, the value of completing Grade 12 lies in opening up the opportunity to acquire some form of tertiary education qualification.

• Though the unemployment rates for 18-24-year-olds with tertiary qualifications are much lower than those for youth’s with the NSC or less, they are nevertheless high in relation to South Africa’s overall unemployment rate.
Policy suggestions

I. Make ANA reliable
Introducing the Annual National Assessments in 2011 was a landmark achievement for the country for which the Department of Basic Education should be commended. The benefits of these tests are likely to be large and disproportionately in favour of the poor. However, their current implementation leaves much to be desired, as has been made explicit above. For the ANAs to fulfil the role for which they were created, they must be:

- **Trustworthy.** Given the nature of nationally standardised exams, and the lessons learnt from international experience, it is imperative that there is an independent, external body which verifies the quality and monitors the implementation of the ANAs. This is a large, costly and complex process which must be planned well in advance. Given the logistical and financial constraints of monitoring all grades, only one (or at most two) grades should be externally verified every year – probably Grades Three and Six. The Western Cape Education Department has conducted systemic evaluations in that province since 2002. The lessons learnt and expertise acquired should be shared with the national DBE. It is imperative for the DBE to realise that unless there is an external verification body which can independently assure the quality of the ANAs, the schooling system and the public more generally will not trust any reported changes as being authoritative, apolitical, and unbiased.

- **Reliable.** If the ANAs are to provide credible feedback on performance and progress to parents, teachers, principals and DBE officials, they need to be an accurate reflection of underlying learning. The tests should be well aligned with the curriculum and the difficulty levels of each grade (and subsequent years) calibrated such that they are each grade-appropriate. There should be careful reflection on the ANA 2012 tests in order to understand where the fault-lines were and how they can be avoided in subsequent ANAs. As it stands, no one who understands the dynamics of educational assessments believes that the improvements in ANA between 2011 and 2012 reflect reality. Furthermore, providing erroneous feedback to teachers and principals is counter-productive and will make any future endeavours to improve performance all the more difficult.

- **Properly utilised.** The ANAs provide a wealth of information on the distribution of performance across provinces, districts, circuits and schools. Stakeholders at various levels of the system would find the information generated from ANA tremendously helpful, provided that it is presented to them in a usable format. The Department of Basic Education should create a dashboard system for district officials that provides comparative information on school performance. Importantly, this information should only be provided once the above mentioned reliability issues have been sufficiently addressed – implementing accountability and monitoring systems on inaccurate information can be highly costly and do significant harm to the system. Given that the ANAs are a primary means of identifying schools and children that need further support, the DBE should organise a number of targeted remedial interventions that are highly structured and sequenced – similar to the workbooks. That is to say that the theory of improvement must be made explicit. Where ANA results indicate that a child or a class has not reached some basic threshold of performance, the teacher should have clear, simple guidelines explaining which of a limited number of interventions they should implement and understand exactly how it should be implemented. As Schleicher (2009, p. 262) exhorts,
Educational systems must plan carefully how to manage and respond to public debate which follows the publication of school-level test results and give support to those schools with weak results, using the data to bring all schools up to a given level, rather than allowing the pressures of league tables to polarise school quality.

II. Implement a nation-wide system of minimum-proficiency diagnostic teacher testing and capacitation for numeracy and literacy starting with the Foundation Phase.

The existing body of evidence suggests that a large proportion of South African teachers have below-basic content knowledge in the subjects that they teach – largely as a result of inadequate apartheid-era teacher training and the ineffectiveness of in-service teacher training initiatives. In light of this, and following the premise that teachers cannot teach what they do not know, it is a logical imperative that a system of identifying which teachers need what help is urgently required.

Given the current state of teacher content knowledge in poor and rural schools, the DBE cannot afford to be idealistic in its implementation of this system of teacher testing and training. Rather than ascribing to the aspirational planning approach that has become characteristic of South African policy – where one might set an impractically high benchmark for desirable teacher content knowledge – one should first aim to ensure that every teacher in the system has the basic content knowledge required to cover the curriculum that they currently teach. For example, rather than decreeing that every primary school mathematics teacher should be able to pass the NSC mathematics exam, it would be far more realistic to take an incremental approach and set the minimum-proficiency benchmark at a 70 per cent mark on the Grade Nine annual national assessment, combined with at least a 90 per cent mark in the ANA of the grade which they are currently teaching. If a Grade Six mathematics teacher cannot achieve 70 per cent on the Grade Nine ANA for mathematics, and achieve 90 per cent for the Grade Six mathematics ANA, one can say that they do not currently possess the requisite content knowledge to teach Grade Six mathematics. As a matter of urgency, they should be required to undergo minimum-proficiency teacher training for the subjects which they teach and then re-assessed at the end of the training. Before trying to get every teacher to a desirable level, first ensure that all teachers have the basic content knowledge in the subjects that they teach.

Given the logistics involved with implementing a testing and training operation of this scale, it is advisable to pilot the system with one district and then to roll out the system nationally in a progressive way. For example the DBE could start with Foundation Phase (FP) mathematics teachers in a particular district and require all FP maths teachers to register and write the minimum proficiency test within six months. Teachers who do not meet the minimum-proficiency benchmark for the subjects that they teach should be given six months to complete the minimum-proficiency training which should be free of charge and accessible. Importantly, the training provided should be dignified, highly practical, structured and sequenced, with formative testing built into each module to assess whether or not the teacher has acquired the necessary knowledge and skills.

In order to get teacher and union buy in, it will need to be made explicit that these tests are primarily for diagnostic rather than punitive purposes. Through a variety of mechanisms (such as contracts and confidentiality clauses) it is possible to reassure all parties involved that these tests are truly developmental in nature. The ultimate aim of such a system should not be to vilify and demean teachers and the teaching profession, but to increase the capacity and dignity of teachers. Elmore (2004b, p. 93) provides a useful description of the interplay between accountability and capacitation:

For every increment of performance I demand from you, I have an equal responsibility to provide you with the capacity to meet that expectation. Likewise, for every investment you
make in my skill and knowledge, I have a reciprocal responsibility to demonstrate some new increment in performance.

III. Increase the technical capacity and implementation ability of the Department of Basic Education

Before it is possible to reform a broken system, there needs to be a capable and competent bureaucracy, which can (i) identify the binding constraints to progress, (ii) formulate policy based on objectively verifiable scientific evidence, (iii) implement those policies in an accountable, disciplined, coordinated and sustained manner, and (iv) document successes and failures and learn from them going forward. The comparability issues around ANA 2011 and 2012 highlight the need for additional technical and educational expertise in the national Department of Basic Education and the need for greater accountability. This points to the DBE’s inability or unwillingness to appoint personnel based on expertise and technical competence, or conversely, to dismiss personnel who lack the competence to fulfil their job-descriptions – as has been reflected in recent events such as the Limpopo textbook crisis, and the on-going stalemate in the Eastern Cape Department of Education. Commenting on these issues in more general terms Nick Taylor (2011b, p. 11), the current head of the National Education Evaluation and Development Unit (NEEDU), does not mince his words in his input-paper for the National Planning Commission’s National Development Plan:

> We would suggest that a commitment to expertise needs to replace the present culture of patronage which dominates large parts, not only of the school system, but of the entire civil service, leading to widespread malfunction in the delivery of services. This is obviously a political problem which needs to be addressed in the political sphere. Until this happens, individual schools may be led to improved performance through inspired principals, but system-wide reform of the largely dysfunctional school system cannot occur. Instituting a commitment to expertise in the civil service means employing and promoting all personnel within the public sector on the basis of merit, knowledge, and skills, rather than according to their political or union connections (Taylor N., 2011b, p. 11).

IV. Increase accountability at all levels of the system

One of the most pressing needs in South African education – and the civil service more generally – is a strong commitment to accountability and transparency. Without a clear articulation of who is responsible for ensuring pupil learning, and to whom, one cannot hold anyone accountable. Over and above the lack of a chain of accountability, even if one did identify who was responsible for non-performance, this does little good unless there are tangible consequences that follow non-performance. Beyond learning outcomes, the DBE should also change its focus from mere compliance towards on-going monitoring and evaluation. Thus, whether textbooks and workbooks are being used is as important as them being delivered; whether teachers are actually in class teaching is as important as them being present at the school, and so on.

The National Planning Commission highlights the systemic nature of the lack of accountability in the public sector in South Africa, and particularly in education:

> Accountability is essential to democracy. There are several weaknesses in the accountability chain, with a general culture of blame-shifting. The accountability chain has to be strengthened from top to bottom. To begin with, parliamentary accountability is weak, with Parliament failing to fulfil its most basic oversight role. Education outcomes cannot improve unless accountability is reinforced throughout the system, from learner results to the delivery of textbooks (NPC, 2012, p. 45).
Similarly, a recently conducted public expenditure analysis by RESEP and Oxford Policy Management (2012, p. 37) concludes that:

The system appears to suffer from both a lack of top-down oversight and a lack of bottom-up accountability, which means that there is little consequence for non-performance and therefore little emphasis on results and ensuring cost effectiveness. Weak accountability also means that there is little motivation to procure and retain skilled individuals. An example is the lack of accountability for textbooks that are either not delivered or delivered incorrectly. The supply chain is complicated, interdependent and involves many actors, both public and private and there is no system to hold specific parties to account or to create consequences for non-performance (RESEP and Oxford Policy Management, 2012, p. 37).

V. Set realistic goals that focus on the universal acquisition of basic skills

The existing approach of Government with respect to educational goal-setting can only be described as aspirational planning. Many of the targets set by Presidency and the Department of Basic Education show no regard for the starting point, and little regard for what is actually feasible (using local and international experience as benchmarks). For example, Goal 2 of the ‘Action Plan to 2014’ sets the 2014 target for the proportion of Grade Six pupils with minimum mastery of language and mathematics competences at 60 per cent for both subjects, despite the fact that the 2009 baseline was 37 per cent for language, but only 19 per cent for mathematics. (DBE, 2011, p. 4). Apart from these goals being entirely unrealistic (tripling the proportion of pupils acquiring basic mathematics competency in five years), they also do not seem to distinguish between the two subjects, in spite of the fact that South African pupils perform comparatively worse in mathematics than in language. As Lewin (2007, p. 7), commenting on the process of setting goals for developing countries, explains: ‘Generally targets and indicators are not contextualised or related to different starting points, realistic assessments of capacity, and recent rates of progress. This can result in increasingly unrealistic goals.’ Similarly Elmore (2004a, p. 13) notes: ‘Just as teachers face pupils with multiple points of access to learning, so too do policymakers and administrators face schools, and school systems, with widely divergent points of departure.’

Following an aspirational goal-setting approach leads to either declining educational standards (in order to meet the goals), or a continual re-adjustment of the elusive targets. It would seem that the gains made between ANA 2011 and ANA 2012 for example were primarily due to easier tests in 2012, rather than any real progress over the period, as has been explained in section III above. While the Action Plan to 2030 is a step in the right direction, the Department of Basic Education should further prioritise among the many goals listed in the document. The main emphasis should be on the universal acquisition of basic skills. Policy documents on educational benchmarks should be clear, concise and understandable to the public at large.
Conclusion

The current report has provided an empirical overview of the levels and trends of educational outcomes in South Africa over the last two decades. According to the weight of available evidence, over the 1995-2002 period there was no improvement in the maths or science outcomes of South African children. Similarly, between 2000 and 2007 there was no observable improvement in numeracy or literacy outcomes amongst primary school children in the country. The only cross-national survey of educational achievement that has shown any improvement has been TIMSS 2011 where there was a one and a half grade-level improvement in mathematics and science over the 2002-2011 period at the Grade Nine level. While this shows that there have been some recent improvements, it is difficult to celebrate when one considers how low the post-improvement level of performance really is. Three quarters (76 per cent) of Grade Nine pupils in 2011 still had not acquired a basic understanding about whole numbers, decimals, operations or basic graphs, and this is at the improved level of performance. Part of the reason for the improvement is the fact that we started from an exceedingly low base in 2002. To place this in perspective, South Africa’s post-improvement level of performance is still the lowest of all participating countries, with the average South African Grade Nine child performing between two and three grade levels lower than the average Grade Eight child from middle-income countries.

The eight most important findings of the preceding research are as follows:

1. Irrespective of which subject or grade one chooses to test, most South African children are performing significantly below the curriculum, often failing to acquire functional numeracy and literacy skills. Apart from the 25 per cent of schools that are mostly functional, South African schools as they currently stand do not, and arguably cannot, impart to pupils the foundational knowledge and skills they should be acquiring at school.

2. The severe inequalities of educational outcomes in South Africa can be seen along a number of correlated dimensions, most notably: wealth, school location, language and province. In each case the difference between the top and bottom categories is at least two grade-levels worth of learning and sometimes is as large as four grade-levels.

3. The learning deficits that children acquire in their primary school career grow over time to the extent that they become insurmountable and preclude pupils from following the curriculum at higher grades, especially in subjects that are vertically demarcated like mathematics and science. Intervening early to prevent, diagnose and correct these learning deficits is the only appropriate response.

4. While the NSC pass rate has been increasing in recent years, this measure should not be seen as an accurate indication of the quality of education in the country. It is flawed because it only reflects the performance of the best-performing 50 per cent of a cohort, i.e. those that make it to Grade 12, and it does not take into account subject combinations and the fact that more pupils are opting for easier subjects like mathematics literacy, compared to more challenging subjects like mathematics.

5. There are large differences in the provincial rates of retention-to-matriculation. The ratio of Grade Two enrolments in 2001 to matric passes in 2011 was only two in ten in the Eastern Cape, but six in ten in Gauteng.
6. South Africa has some of the least-knowledgeable primary school mathematics teachers in sub-Saharan Africa. Many of these teachers, especially those that serve poor and rural communities, have below-basic levels of content knowledge. In many instances these teachers cannot answer questions their pupils are required to answer according to the curriculum.

7. Although the Annual National Assessments (ANAs) are one of the most important and needed policy innovations since the transition, given the way that these tests are currently implemented – including the formulation, marking, invigilation, and moderation procedures –they cannot be used as a reliable indicator of progress.

8. The sub-standard quality of education provided to most South African youth has severe economic consequences for those affected. Furthermore, the economic prospects of the youth appear to be deteriorating over time. The percentage of 18-24 year olds who are not in education, employment or training (NEET) has increased from about 30 per cent in 1995 to 45 per cent in 2011 while the percentage enrolled in education has decreased from 50 per cent to 36 per cent over the same period. The unemployment rate for the youth has also increased from 36 per cent in 1995 to 50 per cent in 2011, standing at twice the national unemployment rate in 2011. Furthermore, of those unemployed in 2011, more than 70 per cent had never been employed before. Perhaps most disconcertingly, for the youth completing Grade 12 does not markedly increase one’s chances of finding employment relative to 18-24 year olds with less than the NSC. Rather, the value of matric lies in opening up opportunities to acquire some form of tertiary education, an opportunity available to only a small minority.

While South Africa’s education system is in a dire state, there are a number of recent policies that indicate that the Department of Basic Education is beginning to address some of the root causes of underperformance. The recent workbook initiative, the Curriculum Assessment Policy Statement (CAPS), the Action Plan to 2030 and the implementation of the ANAs are all moves in the right direction. However, there are still a number of areas which must be addressed if we are to improve the forms of teaching and learning in most South African classrooms, including the following:

1. **Increase the managerial, administrative and technical capacity of the national and provincial bureaucracies.** Many well-intentioned policies are never implemented, or implemented badly, due to a lack of managerial and administrative capacity at all levels. Improving the administrative systems and managerial efficiency of government is likely to have large spill-over effects into all areas of operation.

2. **Increase accountability by formulating coherent, clear and systematic implementation plans.** For every policy created by the national or provincial Departments there should be a clear chain of accountability with verifiable and trackable goals and responsibilities assigned to specific individuals (RESEP & Oxford Policy Management, 2012, p.36). Consequences for non-performance should be explicit and acted upon without partiality or delay. The existing culture of blame-shifting, impunity, patronage and obfuscation mean that ineptitude and incompetence are not penalised. This is unsustainable and is arguably a binding constraint to systemic progress. Additionally, new appointments should be selected primarily on competence and skill rather than union or political connections.

3. **Implement a nation-wide system of diagnostic teacher testing and training.** Teachers who do not have the basic level of content knowledge required to teach their subjects should be required to enter compulsory training within a specified time-frame, and subsequently pass a test of basic proficiency.
If they cannot pass these tests after training or repeated training, they should be removed from the teaching corps. Implementing such policies are likely to be politically unpopular and may cost the government votes, but should be implemented for the benefit of those who cannot vote i.e. pupils.

4. **Externally evaluate the ANAs at one primary school grade, perhaps Grade Six.** For the ANAs to be a reliable indication of pupil learning-outcomes they should be externally administered and marked by an independent body. Unless these tests are quality-assured in the test-construction phase, as well as independently administered, marked and moderated, they cannot be regarded as reliable indicators. Due to the logistical and financial implications of such a large undertaking, it should only be externally evaluated at one grade per year.

5. **Provide a clear articulation of who is responsible for ensuring pupil learning, and to whom, with clear consequences for non-performance.** Without an explicit chain of accountability, pupil outcomes cannot improve on a national level. While it is indisputable that the government should provide every school with the basic infrastructure required for learning (water, sanitation, buildings, textbooks, etc.) and support teachers and principals, one cannot absolve schools of responsibility for dismal performance because they do not have libraries or science laboratories. Under the right circumstances these do improve learning outcomes, and ultimately they should be provided to all schools. However, libraries and laboratories are not a prerequisite for basic school functionality and adequate learning outcomes – as many excellent under-resourced schools prove. How is it possible that two equally poor schools with socio-economically similar pupils perform at vastly different levels – one dysfunctional, the other excellent? Commenting on the impact of the influential ‘Coleman Report’ in America, Coleman explains that one of the main impacts of the report was to shift the policy-consensus in the United States towards educational outcomes rather than educational inputs (see below) – something which is also needed in South Africa.

The long range impact of the report will probably be to strengthen the move toward evaluating schools in terms of their results rather than their inputs...School superintendents and educators have been reluctant to measure schools by how well the pupils do. Whether or not they admit it, they feel that the primary variation in pupil performance is not what the schools are doing but what the child comes to school with (Coleman, 1972, p. 13).

6. **Use the externally evaluated ANAs to determine which schools are the most dysfunctional and thus require the most support.** Identify schools that are academically bankrupt (i.e. no learning is taking place) and place them on a crisis list. These schools should receive the most support and the closest monitoring. Schools should be given a clear, structured, sequenced program of improvement, outlining the steps necessary to get to a basic level of functionality.

Lastly, but perhaps most importantly, it is not possible to solve a crisis that does not officially exist. The speeches of Departmental officials would lead an uninformed person to conclude that while education in South Africa has its problems, ‘there is no crisis’. These statements are not simply about rhetorical technicalities or nomenclature, but rather provide an indication of the DBE’s overall prognosis. The DBE genuinely believes there is no on-going crisis in the quality of education in South Africa. This is simply not true. A systematic reading of the available evidence, some of which has been reported in this document, would lead a reasonable observer to conclude that gross underperformance is ubiquitous, that inequality is systemic, and that there has been only marginal progress in educational outcomes since the transition. Without acknowledging the true severity of the problem, it is not possible to mobilize the resources and public support necessary to implement the uncomfortable and costly reforms that are necessary to make significant and sustained improvements in the quality of education.
While the low-level equilibrium that South Africa finds itself in has its roots in the apartheid regime of institutionalised inequality, this fact does not absolve the current administration from its responsibility to provide a quality education to every South African child, not only the rich. After 19 years of democratic rule most black children continue to receive an education which condemns them to the underclass of South African society, where poverty and unemployment are the norm, not the exception. This substandard education does not develop their capabilities or expand their economic opportunities, but instead denies them dignified employment and undermines their own sense of self-worth. In short, poor school performance in South Africa reinforces social inequality and leads to a situation where children inherit the social station of their parents, irrespective of their motivation or ability. Until such a time as the Department of Basic Education and the ruling administration are willing to seriously address the underlying issues in South African education, at whatever political or economic cost, the existing patterns of underperformance and inequality will remain unabated.
References

